BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11716785)

  • 1. Genomic organization of Tropomodulins 2 and 4 and unusual intergenic and intraexonic splicing of YL-1 and Tropomodulin 4.
    Cox PR; Siddique T; Zoghbi HY
    BMC Genomics; 2001; 2():7. PubMed ID: 11716785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequencing, expression analysis, and mapping of three unique human tropomodulin genes and their mouse orthologs.
    Cox PR; Zoghbi HY
    Genomics; 2000 Jan; 63(1):97-107. PubMed ID: 10662549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic organization of mouse and human erythrocyte tropomodulin genes encoding the pointed end capping protein for the actin filaments.
    Chu X; Thompson D; Yee LJ; Sung LA
    Gene; 2000 Oct; 256(1-2):271-81. PubMed ID: 11054557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tropomodulin Isoform-Specific Regulation of Dendrite Development and Synapse Formation.
    Omotade OF; Rui Y; Lei W; Yu K; Hartzell HC; Fowler VM; Zheng JQ
    J Neurosci; 2018 Nov; 38(48):10271-10285. PubMed ID: 30301754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tropomodulin isoforms utilize specific binding functions to modulate dendrite development.
    Gray KT; Suchowerska AK; Bland T; Colpan M; Wayman G; Fath T; Kostyukova AS
    Cytoskeleton (Hoboken); 2016 Jun; 73(6):316-28. PubMed ID: 27126680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle.
    Gokhin DS; Ochala J; Domenighetti AA; Fowler VM
    Development; 2015 Dec; 142(24):4351-62. PubMed ID: 26586224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tropomodulins and Leiomodins: Actin Pointed End Caps and Nucleators in Muscles.
    Fowler VM; Dominguez R
    Biophys J; 2017 May; 112(9):1742-1760. PubMed ID: 28494946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The switch role of the Tmod4 in the regulation of balanced development between myogenesis and adipogenesis.
    Zhao X; Huang Z; Liu X; Chen Y; Gong W; Yu K; Qin L; Chen H; Mo D
    Gene; 2013 Dec; 532(2):263-71. PubMed ID: 24036428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing interaction forces between actin and proteins of the tropomodulin family reveals the presence of the N-terminal actin-binding site in leiomodin.
    Arslan B; Colpan M; Gray KT; Abu-Lail NI; Kostyukova AS
    Arch Biochem Biophys; 2018 Jan; 638():18-26. PubMed ID: 29223925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of tropomodulin's leucine rich repeat domain in the formation of neurite-like processes.
    Guillaud L; Gray KT; Moroz N; Pantazis C; Pate E; Kostyukova AS
    Biochemistry; 2014 Apr; 53(16):2689-700. PubMed ID: 24746171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tropomodulin's Actin-Binding Abilities Are Required to Modulate Dendrite Development.
    Gray KT; Stefen H; Ly TNA; Keller CJ; Colpan M; Wayman GA; Pate E; Fath T; Kostyukova AS
    Front Mol Neurosci; 2018; 11():357. PubMed ID: 30356860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tropomodulins: life at the slow end.
    Fischer RS; Fowler VM
    Trends Cell Biol; 2003 Nov; 13(11):593-601. PubMed ID: 14573353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative promoter usage and alternative splicing of the rat estrogen receptor alpha gene generate numerous mRNA variants with distinct 5'-ends.
    Ishii H; Kobayashi M; Sakuma Y
    J Steroid Biochem Mol Biol; 2010 Jan; 118(1-2):59-69. PubMed ID: 19833204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tropomyosin-binding properties modulate competition between tropomodulin isoforms.
    Colpan M; Moroz NA; Gray KT; Cooper DA; Diaz CA; Kostyukova AS
    Arch Biochem Biophys; 2016 Jun; 600():23-32. PubMed ID: 27091317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tropomodulin binds to filensin intermediate filaments.
    Fischer RS; Quinlan RA; Fowler VM
    FEBS Lett; 2003 Jul; 547(1-3):228-32. PubMed ID: 12860419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genomic structure of the human SPEC1 gene reveals complex splicing and close promoter proximity to the AF1q translocation gene.
    Pirone DM; Oberst MD; Stylianou D; Burbelo PD
    Gene; 2001 Aug; 273(2):295-303. PubMed ID: 11595176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Splicing analysis disclosed a determinant single nucleotide for exon skipping caused by a novel intraexonic four-nucleotide deletion in the dystrophin gene.
    Tran VK; Takeshima Y; Zhang Z; Yagi M; Nishiyama A; Habara Y; Matsuo M
    J Med Genet; 2006 Dec; 43(12):924-30. PubMed ID: 16738009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms.
    Lee PL; Gelbart T; West C; Halloran C; Beutler E
    Blood Cells Mol Dis; 1998 Jun; 24(2):199-215. PubMed ID: 9642100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts.
    Seim I; Collet C; Herington AC; Chopin LK
    BMC Genomics; 2007 Aug; 8():298. PubMed ID: 17727735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Favorable prognostic role of tropomodulins in neuroblastoma.
    Bettinsoli P; Ferrari-Toninelli G; Bonini SA; Guarienti M; Cangelosi D; Varesio L; Memo M
    Oncotarget; 2018 Jun; 9(43):27092-27103. PubMed ID: 29930753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.