These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11716865)

  • 1. Disuse-induced deterioration of bone strength is not stopped after free remobilization in young adult rats.
    Trebacz H
    J Biomech; 2001 Dec; 34(12):1631-6. PubMed ID: 11716865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-point bending and acoustic emission study of adult rat femora after immobilization and free remobilization.
    Trebacz H; Zdunek A
    J Biomech; 2006; 39(2):237-45. PubMed ID: 16321625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-dependent effect of limb immobilization and remobilization on rat bone.
    Trebacz H; Dmowska M; Baj J
    Folia Biol (Krakow); 2002; 50(3-4):121-7. PubMed ID: 12729157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Changes in bone strength during convalescence after immobilization induces bone loss--experiment with adult rats].
    Trebacz H
    Chir Narzadow Ruchu Ortop Pol; 2003; 68(3):197-201. PubMed ID: 14564799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of immobilization, three forms of remobilization, and subsequent deconditioning on bone mineral content and density in rat femora.
    Kannus P; Järvinen TL; Sievänen H; Kvist M; Rauhaniemi J; Maunu VM; Hurme T; Jozsa L; Järvinen M
    J Bone Miner Res; 1996 Sep; 11(9):1339-46. PubMed ID: 8864909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of remobilization on rat femur are dose-dependent.
    Järvinen TL; Kannus P; Sievänen H; Józsa L; Heinonen OJ; Vieno T; Järvinen M
    Scand J Med Sci Sports; 2001 Oct; 11(5):292-8. PubMed ID: 11696214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in canine cortical and cancellous bone mechanical properties following immobilization and remobilization with exercise.
    Kaneps AJ; Stover SM; Lane NE
    Bone; 1997 Nov; 21(5):419-23. PubMed ID: 9356735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of cancellous bone to aging and immobilization in growing rats.
    Chen MM; Jee WS; Ke HZ; Lin BY; Li QN; Li XJ
    Anat Rec; 1992 Nov; 234(3):317-34. PubMed ID: 1443661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical loading attenuates bone loss due to immobilization and calcium deficiency.
    Inman CL; Warren GL; Hogan HA; Bloomfield SA
    J Appl Physiol (1985); 1999 Jul; 87(1):189-95. PubMed ID: 10409574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats.
    Lin HS; Wang HS; Chiu HT; Cheng KB; Hsu AT; Huang TH
    J Sports Sci Med; 2018 Jun; 17(2):188-196. PubMed ID: 29769819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jump exercise during remobilization restores integrity of the trabecular architecture after tail suspension in young rats.
    Ju YI; Sone T; Okamoto T; Fukunaga M
    J Appl Physiol (1985); 2008 Jun; 104(6):1594-600. PubMed ID: 18420719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization distorts allometry of rat femur: implications for disuse osteoporosis.
    Sievänen H; Kannus P; Järvinen TL
    Calcif Tissue Int; 1997 Apr; 60(4):387-90. PubMed ID: 9075638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of age on mechanical properties of healing fractures and intact bones in rats.
    Ekeland A; Engesoeter LB; Langeland N
    Acta Orthop Scand; 1982 Aug; 53(4):527-34. PubMed ID: 7102268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reversibility of disuse osteoporosis. Fluoride treatment and bone strength.
    Rosenquist JB; Spengler DM; Mattsson S
    Clin Orthop Relat Res; 1977; (126):305-8. PubMed ID: 598136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chronic undernutrition on body mass and mechanical bone quality under normoxic and altitude hypoxic conditions.
    Lezon C; Bozzini C; Agûero Romero A; Pinto P; Champin G; Alippi RM; Boyer P; Bozzini CE
    Br J Nutr; 2016 May; 115(9):1687-95. PubMed ID: 26961128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hindlimb suspension diminishes femoral cross-sectional growth in the rat.
    van der Meulen MC; Morey-Holton ER; Carter DR
    J Orthop Res; 1995 Sep; 13(5):700-7. PubMed ID: 7472748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats.
    Meyer RA; Tsahakis PJ; Martin DF; Banks DM; Harrow ME; Kiebzak GM
    J Orthop Res; 2001 May; 19(3):428-35. PubMed ID: 11398856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of free mobilization and low- to high-intensity treadmill running on the immobilization-induced bone loss in rats.
    Kannus P; Sievänen H; Järvinen TL; Järvinen M; Kvist M; Oja P; Vuori I; Jozsa L
    J Bone Miner Res; 1994 Oct; 9(10):1613-9. PubMed ID: 7817808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostability of bone tissue after immobilization induced osteopenia in a rat model.
    Trebacz H; Wójtowicz K
    Folia Histochem Cytobiol; 2008; 46(3):379-82. PubMed ID: 19056544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of fractured and intact rat femora evaluated by bending, torsional and tensile tests.
    Ekeland A; Engesaeter LB; Langeland N
    Acta Orthop Scand; 1981 Dec; 52(6):605-13. PubMed ID: 7331797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.