These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11716868)

  • 1. Finite element calculated uniaxial apparent stiffness is a consistent predictor of uniaxial apparent strength in human vertebral cancellous bone tested with different boundary conditions.
    Yeni YN; Fyhrie DP
    J Biomech; 2001 Dec; 34(12):1649-54. PubMed ID: 11716868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apparent Young's modulus of vertebral cortico-cancellous bone specimens.
    El Masri F; Sapin de Brosses E; Rhissassi K; Skalli W; Mitton D
    Comput Methods Biomech Biomed Engin; 2012; 15(1):23-8. PubMed ID: 21749276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human vertebral body apparent and hard tissue stiffness.
    Hou FJ; Lang SM; Hoshaw SJ; Reimann DA; Fyhrie DP
    J Biomech; 1998 Nov; 31(11):1009-15. PubMed ID: 9880057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biomechanical analysis of the effects of resorption cavities on cancellous bone strength.
    Hernandez CJ; Gupta A; Keaveny TM
    J Bone Miner Res; 2006 Aug; 21(8):1248-55. PubMed ID: 16869723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trabecular shear stress in human vertebral cancellous bone: intra- and inter-individual variations.
    Yeni YN; Hou FJ; Vashishth D; Fyhrie DP
    J Biomech; 2001 Oct; 34(10):1341-6. PubMed ID: 11522314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive assessment of stiffness and failure load of human vertebrae from CT-data.
    Martin H; Werner J; Andresen R; Schober HC; Schmitz KP
    Biomed Tech (Berl); 1998 Apr; 43(4):82-8. PubMed ID: 9611393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies.
    Kim DG; Hunt CA; Zauel R; Fyhrie DP; Yeni YN
    Ann Biomed Eng; 2007 Nov; 35(11):1907-13. PubMed ID: 17690983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of mechanical properties of the cancellous bone of the mandibular condyle.
    van Ruijven LJ; Giesen EB; Farella M; van Eijden TM
    J Dent Res; 2003 Oct; 82(10):819-23. PubMed ID: 14514763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique.
    Zeinali A; Hashemi B; Akhlaghpoor S
    Phys Med; 2010 Apr; 26(2):88-97. PubMed ID: 19781969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension.
    Fyhrie DP; Vashishth D
    Bone; 2000 Feb; 26(2):169-73. PubMed ID: 10678412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of vertebral strength topography with 3-dimensional computed tomographic structure.
    Noshchenko A; Plaseied A; Patel VV; Burger E; Baldini T; Yun L
    Spine (Phila Pa 1976); 2013 Feb; 38(4):339-49. PubMed ID: 22869060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stiffening effects of cortical bone on vertebral cancellous bone in situ.
    Bryce R; Aspden RM; Wytch R
    Spine (Phila Pa 1976); 1995 May; 20(9):999-1003. PubMed ID: 7631248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the vertebral strength using a finite element model derived from low-dose biplanar imaging: benefits of subject-specific material properties.
    Sapin-de Brosses E; Jolivet E; Travert C; Mitton D; Skalli W
    Spine (Phila Pa 1976); 2012 Feb; 37(3):E156-62. PubMed ID: 22290213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
    Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P
    J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties.
    Yeni YN; Kim DG; Divine GW; Johnson EM; Cody DD
    Bone; 2009 Jan; 44(1):130-6. PubMed ID: 18848654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased microstructural variability is associated with decreased structural strength but with increased measures of structural ductility in human vertebrae.
    Yerramshetty J; Kim DG; Yeni YN
    J Biomech Eng; 2009 Sep; 131(9):094501. PubMed ID: 19725698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.
    Yeni YN; Zelman EA; Divine GW; Kim DG; Fyhrie DP
    Bone; 2008 Mar; 42(3):591-6. PubMed ID: 18180212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.
    Lu Y; Maquer G; Museyko O; PĆ¼schel K; Engelke K; Zysset P; Morlock M; Huber G
    J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.