BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1171699)

  • 1. Studies of the interaction of the fluorophores harmine and harmaline with calf thymus DNA.
    Duportail G; Lami H
    Biochim Biophys Acta; 1975 Aug; 402(1):20-30. PubMed ID: 1171699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHARMACOKINETICS In the rat of the hallucinogenic alkaloids harmine and harmaline.
    Zetler G; Back G; Iven H
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 285(3):273-92. PubMed ID: 4282118
    [No Abstract]   [Full Text] [Related]  

  • 3. Beta-carboline alkaloids bind DNA.
    Nafisi S; Bonsaii M; Maali P; Khalilzadeh MA; Manouchehri F
    J Photochem Photobiol B; 2010 Aug; 100(2):84-91. PubMed ID: 20541950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of pharmacological levels of harmane, harmine and harmaline in mammalian brain tissue, cerebrospinal fluid and plasma by high-performance liquid chromatography with fluorimetric detection.
    Moncrieff J
    J Chromatogr; 1989 Nov; 496(2):269-78. PubMed ID: 2613832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interspecies metabolic diversity of harmaline and harmine in in vitro 11 mammalian liver microsomes.
    Li S; Teng L; Liu W; Cheng X; Jiang B; Wang Z; Wang C
    Drug Test Anal; 2017 May; 9(5):754-768. PubMed ID: 27377954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic beta-carboline alkaloids harmaline and harmine.
    Yu AM; Idle JR; Krausz KW; Küpfer A; Gonzalez FJ
    J Pharmacol Exp Ther; 2003 Apr; 305(1):315-22. PubMed ID: 12649384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic pathways of the psychotropic-carboline alkaloids, harmaline and harmine, by liquid chromatography/mass spectrometry and NMR spectroscopy.
    Zhao T; Zheng SS; Zhang BF; Li YY; Bligh SW; Wang CH; Wang ZT
    Food Chem; 2012 Sep; 134(2):1096-105. PubMed ID: 23107733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial dysfunction and biotransformation of β-carboline alkaloids, harmine and harmaline, on isolated rat hepatocytes.
    Nakagawa Y; Suzuki T; Ishii H; Ogata A; Nakae D
    Chem Biol Interact; 2010 Dec; 188(3):393-403. PubMed ID: 20833158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do planar alkaloids from Strychnos usambarensis intercalate into the DNA helix?
    Caprasse M; Houssier C
    Biochimie; 1983 Feb; 65(2):157-67. PubMed ID: 6405806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heme peroxidases are responsible for the dehydrogenation and oxidation metabolism of harmaline into harmine.
    Wang YX; Cao N; Guan HD; Cheng XM; Wang CH
    Chin J Nat Med; 2022 Mar; 20(3):194-201. PubMed ID: 35369963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and structural studies on the interaction of an anticancer β-carboline alkaloid, harmine with GC and AT specific DNA oligonucleotides.
    Sharma S; Yadav M; Gupta SP; Pandav K; Kumar S
    Chem Biol Interact; 2016 Dec; 260():256-262. PubMed ID: 27590873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the comutagens, harman and norharman, on the interaction of a tryptophan pyrolysis product, 3-amino-1-methyl-5H-pyrido (4,3-b) indole with DNA.
    Lau PP; Luh Y
    Biochem Biophys Res Commun; 1979 Jul; 89(1):188-94. PubMed ID: 475807
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods.
    Zhang S; Sun X; Kong R; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1666-70. PubMed ID: 25459730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the binding mode of TXNHCH2COOH with calf thymus DNA by spectroscopic methods.
    Ataci N; Arsu N
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Dec; 169():128-33. PubMed ID: 27367618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial metabolites of harman alkaloids.
    Herath W; Mikell JR; Ferreira D; Khan IA
    Chem Pharm Bull (Tokyo); 2003 Jun; 51(6):646-8. PubMed ID: 12808240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between a 3-nitrobenzothiazolo (3,2-a) quinolinium antitumour drug and deoxyribonucleic acid.
    Baez A; González FA; Vázquez D; Waring MJ
    Biochem Pharmacol; 1983 Jul; 32(13):2089-94. PubMed ID: 6870936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic studies on the interaction of calf thymus DNA with the drug levetiracetam.
    Shahabadi N; Hadidi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():278-83. PubMed ID: 22698844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Structural Importance of the C3=C4 Double Bond in Plant Alkaloids Harmine and Harmaline on Their Binding Interactions with Hemoglobin.
    Burman MD; Bag S; Ghosal S; Karmakar S; Pramanik G; Chinnadurai RK; Bhowmik S
    ACS Omega; 2023 Oct; 8(40):37054-37064. PubMed ID: 37841109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-silico Prediction of the Beta-carboline Alkaloids Harmine and Harmaline as Potent Drug Candidates for the Treatment of Parkinson's disease.
    Banerjee R; Kumar M; Gaurav I; Thakur S; Thakur A; Singh K; Karak S; Das R; Chhabra M
    Antiinflamm Antiallergy Agents Med Chem; 2021; 20(3):250-263. PubMed ID: 33183209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of myeloperoxidase activity by the alkaloids of Peganum harmala L. (Zygophyllaceae).
    Bensalem S; Soubhye J; Aldib I; Bournine L; Nguyen AT; Vanhaeverbeek M; Rousseau A; Boudjeltia KZ; Sarakbi A; Kauffmann JM; Nève J; Prévost M; Stévigny C; Maiza-Benabdesselam F; Bedjou F; Van Antwerpen P; Duez P
    J Ethnopharmacol; 2014 Jun; 154(2):361-9. PubMed ID: 24746482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.