These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 11717187)

  • 1. An Ig mu-heavy chain transgene inhibits systemic lupus erythematosus immunopathology in autoimmune (NZB x NZW)F1 mice.
    Wellmann U; Letz M; Schneider A; Amann K; Winkler TH
    Int Immunol; 2001 Dec; 13(12):1461-9. PubMed ID: 11717187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoreactive B cells in lupus-prone New Zealand black mice exhibit aberrant survival and proliferation in the presence of self-antigen in vivo.
    Chang NH; MacLeod R; Wither JE
    J Immunol; 2004 Feb; 172(3):1553-60. PubMed ID: 14734734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct surface phenotypes of B cells responsible for spontaneous production of IgM and IgG anti-DNA antibodies in autoimmune-prone NZB x NZW F1 mice.
    Okada T; Abe M; Takiura F; Hirose S; Shirai T
    Autoimmunity; 1990; 7(2-3):109-20. PubMed ID: 2104180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A peptide derived from an autoantibody can stimulate T cells in the (NZB x NZW)F1 mouse model of systemic lupus erythematosus.
    Ebling FM; Tsao BP; Singh RR; Sercarz E; Hahn BH
    Arthritis Rheum; 1993 Mar; 36(3):355-64. PubMed ID: 7680861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of high affinity autoantibodies in autoimmune New Zealand Black/New Zealand white F1 mice targeted with an anti-DNA heavy chain.
    Friedmann D; Yachimovich N; Mostoslavsky G; Pewzner-Jung Y; Ben-Yehuda A; Rajewsky K; Eilat D
    J Immunol; 1999 Apr; 162(8):4406-16. PubMed ID: 10201976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tolerance to DNA in (NZB x NZW)F1 mice that inherit an anti-DNA V(H) as a conventional micro H chain transgene but not as a V(H) knock-in transgene.
    Steeves MA; Marion TN
    J Immunol; 2004 Jun; 172(11):6568-77. PubMed ID: 15153471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of major histocompatibility complex (MHC) to upregulation of anti-DNA antibody in transgenic mice.
    Song YW; Tsao BP; Hahn BH
    J Autoimmun; 1993 Feb; 6(1):1-9. PubMed ID: 8457281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered selection processes of B lymphocytes in autoimmune NZB/W mice, despite intact central tolerance against DNA.
    Wellmann U; Werner A; Winkler TH
    Eur J Immunol; 2001 Sep; 31(9):2800-10. PubMed ID: 11536179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective and pathogenic roles for B cells during systemic autoimmunity in NZB/W F1 mice.
    Haas KM; Watanabe R; Matsushita T; Nakashima H; Ishiura N; Okochi H; Fujimoto M; Tedder TF
    J Immunol; 2010 May; 184(9):4789-800. PubMed ID: 20368280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic B cell defects in NZB and NZW mice contribute to systemic lupus erythematosus in (NZB x NZW)F1 mice.
    Reininger L; Winkler TH; Kalberer CP; Jourdan M; Melchers F; Rolink AG
    J Exp Med; 1996 Sep; 184(3):853-61. PubMed ID: 9064345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgene-mediated hyper-expression of IL-5 inhibits autoimmune disease but increases the risk of B cell chronic lymphocytic leukemia in a model of murine lupus.
    Wen X; Zhang D; Kikuchi Y; Jiang Y; Nakamura K; Xiu Y; Tsurui H; Takahashi K; Abe M; Ohtsuji M; Nishimura H; Takatsu K; Shirai T; Hirose S
    Eur J Immunol; 2004 Oct; 34(10):2740-9. PubMed ID: 15368290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular basis of in vitro anti-DNA antibody production: evidence for T cell dependence of IgG-class anti-DNA antibody synthesis in the (NZB X NZW)F1 hybrid.
    Sekigawa I; Ishida Y; Hirose S; Sato H; Shirai T
    J Immunol; 1986 Feb; 136(4):1247-52. PubMed ID: 3484766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autoimmunity develops in lupus-prone NZB mice despite normal T cell tolerance.
    Wither J; Vukusic B
    J Immunol; 1998 Nov; 161(9):4555-62. PubMed ID: 9794382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD4+ T lymphocytes with constitutive CD40 ligand in preautoimmune (NZB x NZW)F1 lupus-prone mice: phenotype and possible role in autoreactivity.
    Lettesjö H; Burd GP; Mageed RA
    J Immunol; 2000 Oct; 165(7):4095-104. PubMed ID: 11034421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic graft-versus-host in Ig knockin transgenic mice abrogates B cell tolerance in anti-double-stranded DNA B cells.
    Sekiguchi DR; Jainandunsing SM; Fields ML; Maldonado MA; Madaio MP; Erikson J; Weigert M; Eisenberg RA
    J Immunol; 2002 Apr; 168(8):4142-53. PubMed ID: 11937575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delayed lupus onset in (NZB x NZW)F1 mice expressing a human C-reactive protein transgene.
    Szalai AJ; Weaver CT; McCrory MA; van Ginkel FW; Reiman RM; Kearney JF; Marion TN; Volanakis JE
    Arthritis Rheum; 2003 Jun; 48(6):1602-11. PubMed ID: 12794828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyclonal B cell activation arises from different mechanisms in lupus-prone (NZB x NZW)F1 and MRL/MpJ-lpr/lpr mice.
    Merino R; Iwamoto M; Fossati L; Izui S
    J Immunol; 1993 Dec; 151(11):6509-16. PubMed ID: 7902378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. B cells are anergic in transgenic mice that express IgM anti-DNA antibodies.
    Tsao BP; Chow A; Cheroutre H; Song YW; McGrath ME; Kronenberg M
    Eur J Immunol; 1993 Sep; 23(9):2332-9. PubMed ID: 8370409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defects in the regulation of anti-DNA antibody production in aged lupus-prone (NZB x NZW)F1 mice: analysis of T-cell lymphokine synthesis.
    Sato MN; Minoprio P; Avrameas S; Ternynck T
    Immunology; 1995 May; 85(1):26-32. PubMed ID: 7635519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of the New Zealand Black genetic contribution to lupus from New Zealand Black determined expansions of marginal zone B and B1a cells.
    Atencio S; Amano H; Izui S; Kotzin BL
    J Immunol; 2004 Apr; 172(7):4159-66. PubMed ID: 15034028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.