BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 11717201)

  • 1. Vascular adaptation to microgravity: what have we learned?
    Zhang LF
    J Appl Physiol (1985); 2001 Dec; 91(6):2415-30. PubMed ID: 11717201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peripheral effector mechanism hypothesis of postflight cardiovascular dysfunction.
    Zhang LF; Yu ZB; Ma J; Mao QW
    Aviat Space Environ Med; 2001 Jun; 72(6):567-75. PubMed ID: 11396563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human cerebral autoregulation before, during and after spaceflight.
    Iwasaki K; Levine BD; Zhang R; Zuckerman JH; Pawelczyk JA; Diedrich A; Ertl AC; Cox JF; Cooke WH; Giller CA; Ray CA; Lane LD; Buckey JC; Baisch FJ; Eckberg DL; Robertson D; Biaggioni I; Blomqvist CG
    J Physiol; 2007 Mar; 579(Pt 3):799-810. PubMed ID: 17185344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Peripheral effector mechanism hypothesis on cardiovascular dysfunction after spaceflight].
    Zhang LF; Yu ZB; Ma J; Mao QW
    Sheng Li Ke Xue Jin Zhan; 2001 Jan; 32(1):13-7. PubMed ID: 12545770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity of arterial vasculature during simulated weightlessness and its possible role in the genesis of postflight orthostatic intolerance.
    Zhang LF; Ma J; Mao QW; Yu ZB
    J Gravit Physiol; 1997 Jul; 4(2):P97-100. PubMed ID: 11540713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment.
    Zhang LF
    Eur J Appl Physiol; 2013 Dec; 113(12):2873-95. PubMed ID: 23525669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-duration bed rest as an analog to microgravity.
    Hargens AR; Vico L
    J Appl Physiol (1985); 2016 Apr; 120(8):891-903. PubMed ID: 26893033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The progress in research on the mechanisms of the effects of blood volume reduction on orthostatic tolerance after microgravity or simulated microgravity].
    Wang DS; Ren W; Xiang QL; Sun L
    Space Med Med Eng (Beijing); 2000 Apr; 13(2):152-6. PubMed ID: 11543055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight.
    Hargens AR; Richardson S
    Respir Physiol Neurobiol; 2009 Oct; 169 Suppl 1():S30-3. PubMed ID: 19615471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiovascular adaptation to spaceflight.
    Hargens AR; Watenpaugh DE
    Med Sci Sports Exerc; 1996 Aug; 28(8):977-82. PubMed ID: 8871907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of microgravity induced orthostatic intolerance: implications for effective countermeasures.
    Convertino VA
    J Gravit Physiol; 2002 Dec; 9(2):1-13. PubMed ID: 14638455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight.
    Tahimic CGT; Globus RK
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29035346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Plastic changes of structure, function and perivascular innvervation of arterial vasculature during simulated weightlessness].
    Zhang L
    Space Med Med Eng (Beijing); 1998 Jun; 11(3):215-9. PubMed ID: 11541427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of mechanisms of postflight orthostatic intolerance with a simple cardiovascular system model.
    Broskey J; Sharp MK
    Ann Biomed Eng; 2007 Oct; 35(10):1800-11. PubMed ID: 17592777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Change of pulmonary circulation in microgravity and simulated microgravity].
    Sun L; Xiang QL; Wang DS; Ren W
    Space Med Med Eng (Beijing); 2000 Aug; 13(4):305-9. PubMed ID: 11892754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiovascular physiology. Effects of microgravity.
    Convertino V; Hoffler GW
    J Fla Med Assoc; 1992 Aug; 79(8):517-24. PubMed ID: 1402772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Spaceflight on Cardiovascular Physiology and Health.
    Shen M; Frishman WH
    Cardiol Rev; 2019; 27(3):122-126. PubMed ID: 30365406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling physiology of haemodynamic adaptation in short-term microgravity exposure and orthostatic stress on Earth.
    Mohammadyari P; Gadda G; Taibi A
    Sci Rep; 2021 Feb; 11(1):4672. PubMed ID: 33633331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower body negative pressure exercise plus brief postexercise lower body negative pressure improve post-bed rest orthostatic tolerance.
    Watenpaugh DE; O'Leary DD; Schneider SM; Lee SM; Macias BR; Tanaka K; Hughson RL; Hargens AR
    J Appl Physiol (1985); 2007 Dec; 103(6):1964-72. PubMed ID: 17947505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.