These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 11717242)
1. Testosterone-induced relaxation of rat aorta is androgen structure specific and involves K+ channel activation. Ding AQ; Stallone JN J Appl Physiol (1985); 2001 Dec; 91(6):2742-50. PubMed ID: 11717242 [TBL] [Abstract][Full Text] [Related]
2. Testosterone causes direct relaxation of rat thoracic aorta. Costarella CE; Stallone JN; Rutecki GW; Whittier FC J Pharmacol Exp Ther; 1996 Apr; 277(1):34-9. PubMed ID: 8613939 [TBL] [Abstract][Full Text] [Related]
3. Relaxation of androgens on rat thoracic aorta: testosterone concentration dependent agonist/antagonist L-type Ca2+ channel activity, and 5beta-dihydrotestosterone restricted to L-type Ca2+ channel blockade. Montaño LM; Calixto E; Figueroa A; Flores-Soto E; Carbajal V; Perusquía M Endocrinology; 2008 May; 149(5):2517-26. PubMed ID: 18276759 [TBL] [Abstract][Full Text] [Related]
4. Do androgens play a beneficial role in the regulation of vascular tone? Nongenomic vascular effects of testosterone metabolites. Perusquía M; Stallone JN Am J Physiol Heart Circ Physiol; 2010 May; 298(5):H1301-7. PubMed ID: 20228257 [TBL] [Abstract][Full Text] [Related]
5. Vasoactive androgens: Vasorelaxing effects and their potential regulation of blood pressure. Isidoro L; Ferrer M; Perusquía M Endocr Res; 2018 Aug; 43(3):166-175. PubMed ID: 29528756 [TBL] [Abstract][Full Text] [Related]
6. Endothelium-independent vasorelaxant effect of 20(S)-protopanaxadiol on isolated rat thoracic aorta. Gan L; Wang ZH; Zhang H; Zhou X; Zhou H; Sun C; Si J; Zhou R; Ma CJ; Li J Acta Pharmacol Sin; 2016 Dec; 37(12):1555-1562. PubMed ID: 27616575 [TBL] [Abstract][Full Text] [Related]
7. Potassium channels-mediated vasorelaxation of rat aorta induced by resveratrol. Novakovic A; Bukarica LG; Kanjuh V; Heinle H Basic Clin Pharmacol Toxicol; 2006 Nov; 99(5):360-4. PubMed ID: 17076688 [TBL] [Abstract][Full Text] [Related]
8. Endothelium-dependent and -independent vasorelaxation induced by CIJ-3-2F, a novel benzyl-furoquinoline with antiarrhythmic action, in rat aorta. Chang GJ; Lin TP; Ko YS; Lin MS Life Sci; 2010 Jun; 86(23-24):869-79. PubMed ID: 20388521 [TBL] [Abstract][Full Text] [Related]
9. In vitro relaxation of vascular smooth muscle by atropine: involvement of K+ channels and endothelium. Kwan CY; Zhang WB; Kwan TK; Sakai Y Naunyn Schmiedebergs Arch Pharmacol; 2003 Jul; 368(1):1-9. PubMed ID: 12802579 [TBL] [Abstract][Full Text] [Related]
10. Vasodilatory effects of ethanol extract of Radix Paeoniae Rubra and its mechanism of action in the rat aorta. Jin SN; Wen JF; Wang TT; Kang DG; Lee HS; Cho KW J Ethnopharmacol; 2012 Jun; 142(1):188-93. PubMed ID: 22543176 [TBL] [Abstract][Full Text] [Related]
11. Gender differences in protein kinase G-mediated vasorelaxation of rat aorta. Teede H; van der Zypp A; Majewski H Clin Sci (Lond); 2001 May; 100(5):473-9. PubMed ID: 11294687 [TBL] [Abstract][Full Text] [Related]
12. Testosterone downregulates angiotensin II type-2 receptor via androgen receptor-mediated ERK1/2 MAP kinase pathway in rat aorta. Mishra JS; Hankins GD; Kumar S J Renin Angiotensin Aldosterone Syst; 2016 Oct; 17(4):. PubMed ID: 27765882 [TBL] [Abstract][Full Text] [Related]
13. Antihypertensive effects of androgens in conscious, spontaneously hypertensive rats. Perusquía M; Herrera N; Ferrer M; Stallone JN J Steroid Biochem Mol Biol; 2017 Mar; 167():106-114. PubMed ID: 27888135 [TBL] [Abstract][Full Text] [Related]
14. Evidence for the participation of calcium in non-genomic relaxations induced by androgenic steroids in rat vas deferens. Lafayette SS; Vladimirova I; Garcez-do-Carmo L; Monteforte PT; Caricati Neto A; Jurkiewicz A Br J Pharmacol; 2008 Mar; 153(6):1242-50. PubMed ID: 18264125 [TBL] [Abstract][Full Text] [Related]
15. A xanthine-based KMUP-1 with cyclic GMP enhancing and K(+) channels opening activities in rat aortic smooth muscle. Wu BN; Lin RJ; Lin CY; Shen KP; Chiang LC; Chen IJ Br J Pharmacol; 2001 Sep; 134(2):265-74. PubMed ID: 11564644 [TBL] [Abstract][Full Text] [Related]
16. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Dong H; Waldron GJ; Cole WC; Triggle CR Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009 [TBL] [Abstract][Full Text] [Related]
17. Vasorelaxant effects of Cerebralcare Granule® are mediated by NO/cGMP pathway, potassium channel opening and calcium channel blockade in isolated rat thoracic aorta. Qu Z; Zhang J; Gao W; Chen H; Guo H; Wang T; Li H; Liu C J Ethnopharmacol; 2014 Aug; 155(1):572-9. PubMed ID: 24924524 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms underlying biochanin A-induced relaxation of the aorta differ between normotensive and hypertensive rats. Wang HP; Gao Q; Mei RH; Zhao MH; Lu Y; Li XY; Bruce IC; Xia Q Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):802-7. PubMed ID: 16922810 [TBL] [Abstract][Full Text] [Related]
19. Vasorelaxing action of rutaecarpine: effects of rutaecarpine on calcium channel activities in vascular endothelial and smooth muscle cells. Wang GJ; Wu XC; Chen CF; Lin LC; Huang YT; Shan J; Pang PK J Pharmacol Exp Ther; 1999 Jun; 289(3):1237-44. PubMed ID: 10336511 [TBL] [Abstract][Full Text] [Related]
20. Endothelium-dependent and -independent vasorelaxation by a theophylline derivative MCPT: roles of cyclic nucleotides, potassium channel opening and phosphodiesterase inhibition. Lo YC; Tsou HH; Lin RJ; Wu DC; Wu BN; Lin YT; Chen IJ Life Sci; 2005 Jan; 76(8):931-44. PubMed ID: 15589969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]