BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11717302)

  • 1. NAD(P)-dependent aldehyde dehydrogenases induced during growth of Ralstonia eutropha strain Bo on tetrahydrofurfuryl alcohol.
    Schräder T; Zarnt G; Andreesen JR
    J Bacteriol; 2001 Dec; 183(24):7408-11. PubMed ID: 11717302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic and molecular properties of the quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase from Ralstonia eutropha strain Bo.
    Zarnt G; Schräder T; Andreesen JR
    J Bacteriol; 2001 Mar; 183(6):1954-60. PubMed ID: 11222593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of tetrahydrofurfuryl alcohol by Ralstonia eutropha is initiated by an inducible pyrroloquinoline quinone-dependent alcohol dehydrogenase.
    Zarnt G; Schräder T; Andreesen JR
    Appl Environ Microbiol; 1997 Dec; 63(12):4891-8. PubMed ID: 9406410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1.
    Wu TY; Chen CT; Liu JT; Bogorad IW; Damoiseaux R; Liao JC
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):4969-83. PubMed ID: 26846745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and molecular characterization of a succinate semialdehyde dehydrogenase involved in the catabolism of 4-hydroxybutyric acid in Ralstonia eutropha.
    Lütke-Eversloh T; Steinbüchel A
    FEMS Microbiol Lett; 1999 Dec; 181(1):63-71. PubMed ID: 10564790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of two novel alcohol short-chain dehydrogenases/reductases from Ralstonia eutropha H16 capable of stereoselective conversion of bulky substrates.
    Magomedova Z; Grecu A; Sensen CW; Schwab H; Heidinger P
    J Biotechnol; 2016 Mar; 221():78-90. PubMed ID: 26812656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apo and holo crystal structures of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Cobessi D; Tête-Favier F; Marchal S; Azza S; Branlant G; Aubry A
    J Mol Biol; 1999 Jul; 290(1):161-73. PubMed ID: 10388564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-NadB type L-aspartate dehydrogenase from Ralstonia eutropha strain JMP134: molecular characterization and physiological functions.
    Li Y; Ishida M; Ashida H; Ishikawa T; Shibata H; Sawa Y
    Biosci Biotechnol Biochem; 2011; 75(8):1524-32. PubMed ID: 21821928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-chain alcohol and aldehyde dehydrogenase activities in Acinetobacter calcoaceticus strain HO1-N.
    Fox MG; Dickinson FM; Ratledge C
    J Gen Microbiol; 1992 Sep; 138(9):1963-72. PubMed ID: 1402794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases.
    Li Q; Metthew Lam LK; Xun L
    Biodegradation; 2011 Nov; 22(6):1227-37. PubMed ID: 21526389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gender of alcohol and aldehyde dehydrogenases.
    Messiha FS
    Neurobehav Toxicol Teratol; 1983; 5(2):205-10. PubMed ID: 6346125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of a functional NAD-reducing [NiFe] hydrogenase from the gram-positive Rhodococcus opacus in the gram-negative Ralstonia eutropha.
    Porthun A; Bernhard M; Friedrich B
    Arch Microbiol; 2002 Feb; 177(2):159-66. PubMed ID: 11807565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence and expression of tricarboxylate synthases in Ralstonia eutropha.
    Ewering C; Brämer CO; Bruland N; Bethke A; Steinbüchel A
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):80-9. PubMed ID: 16133321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue distribution, ontogeny, and regulation of aldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice.
    Alnouti Y; Klaassen CD
    Toxicol Sci; 2008 Jan; 101(1):51-64. PubMed ID: 17998271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases.
    Lauterbach L; Lenz O; Vincent KA
    FEBS J; 2013 Jul; 280(13):3058-68. PubMed ID: 23497170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of the fds operon encoding the NAD+-linked formate dehydrogenase of Ralstonia eutropha.
    Oh JI; Bowien B
    J Biol Chem; 1998 Oct; 273(41):26349-60. PubMed ID: 9756865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly selective L-threonine 3-dehydrogenase from Cupriavidus necator and its use in determination of L-threonine.
    Ueatrongchit T; Asano Y
    Anal Biochem; 2011 Mar; 410(1):44-56. PubMed ID: 21073854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase.
    Li Q; Metthew Lam LK; Xun L
    Biodegradation; 2011 Nov; 22(6):1215-25. PubMed ID: 21526390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Dynamics of activity of the key enzymes of polyhydroxyalkanoate metabolism in Ralstonia eutropha].
    Volova TG; Kalacheva GS; Gorbunova OV; Zhila NO
    Prikl Biokhim Mikrobiol; 2004; 40(2):201-9. PubMed ID: 15125198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological role of yeasts NAD(P)+ and NADP+-linked aldehyde dehydrogenases.
    Llorente N; de Castro IN
    Rev Esp Fisiol; 1977 Jun; 33(2):135-42. PubMed ID: 17891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.