These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11717428)

  • 1. High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast.
    Ajo-Franklin CM; Kam L; Boxer SG
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13643-8. PubMed ID: 11717428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins.
    Kiessling V; Tamm LK
    Biophys J; 2003 Jan; 84(1):408-18. PubMed ID: 12524294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the structure of supported membranes and tethered oligonucleotides by fluorescence interference contrast microscopy.
    Ajo-Franklin CM; Yoshina-Ishii C; Boxer SG
    Langmuir; 2005 May; 21(11):4976-83. PubMed ID: 15896039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical techniques for imaging membrane topography.
    Parthasarathy R; Groves JT
    Cell Biochem Biophys; 2004; 41(3):391-414. PubMed ID: 15509889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropatterning fluid lipid bilayers on solid supports.
    Groves JT; Ulman N; Boxer SG
    Science; 1997 Jan; 275(5300):651-3. PubMed ID: 9005848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping fluorophore distributions in three dimensions by quantitative multiple angle-total internal reflection fluorescence microscopy.
    Olveczky BP; Periasamy N; Verkman AS
    Biophys J; 1997 Nov; 73(5):2836-47. PubMed ID: 9370477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable incidence angle fluorescence interference contrast microscopy for z-imaging single objects.
    Ajo-Franklin CM; Ganesan PV; Boxer SG
    Biophys J; 2005 Oct; 89(4):2759-69. PubMed ID: 16085775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution measurements with evanescent-wave fluorescence excitation using variable beam incidence.
    Loerke D; Preitz B; Stühmer W; Oheim M
    J Biomed Opt; 2000 Jan; 5(1):23-30. PubMed ID: 10938762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of support corrugation on silica xerogel--supported phase-separated lipid bilayers.
    Goksu EI; Nellis BA; Lin WC; Satcher JH; Groves JT; Risbud SH; Longo ML
    Langmuir; 2009 Apr; 25(6):3713-7. PubMed ID: 19708250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence microscopic characterization of ionic polymer bead-supported phospholipid bilayer membrane systems.
    Haratake M; Osei-Asante S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2012 Dec; 100():190-6. PubMed ID: 22766297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observing secretory granules with a multiangle evanescent wave microscope.
    Rohrbach A
    Biophys J; 2000 May; 78(5):2641-54. PubMed ID: 10777760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field-induced critical demixing in lipid bilayer membranes.
    Groves JT; Boxer SG; McConnell HM
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):935-8. PubMed ID: 9448263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of the fluorescent probe N-(lissamine Rhodamine B sulfonyl)dipalmitoylphosphatidylethanolamine with phosphatidylcholine bilayers.
    Massari S; Colonna R; Folena E
    Biochim Biophys Acta; 1988 May; 940(1):149-57. PubMed ID: 3365429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces.
    Zhang Y; Wang L; Wang X; Qi G; Han X
    Chemistry; 2013 Jul; 19(27):9059-63. PubMed ID: 23695862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence excitation and imaging of single molecules near dielectric-coated and bare surfaces: a theoretical study.
    Axelrod D
    J Microsc; 2012 Aug; 247(2):147-60. PubMed ID: 22612666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly formation of lipid bilayer coatings on bare aluminum oxide: overcoming the force of interfacial water.
    Jackman JA; Tabaei SR; Zhao Z; Yorulmaz S; Cho NJ
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):959-68. PubMed ID: 25513828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic interaction microscopy: mapping the solid/ liquid interface using amphiphilic probe molecules.
    Honciuc A; Baptiste DJ; Schwartz DK
    Langmuir; 2009 Apr; 25(8):4339-42. PubMed ID: 19253960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence.
    Mattheyses AL; Axelrod D
    J Biomed Opt; 2006; 11(1):014006. PubMed ID: 16526883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cholesterol-based tether for creating photopatterned lipid membrane arrays on both a silica and gold surface.
    Han X; Achalkumar AS; Bushby RJ; Evans SD
    Chemistry; 2009 Jun; 15(26):6363-70. PubMed ID: 19472226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Around-the-objective total internal reflection fluorescence microscopy.
    Burghardt TP; Hipp AD; Ajtai K
    Appl Opt; 2009 Nov; 48(32):6120-31. PubMed ID: 19904308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.