BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11718307)

  • 1. An empirical approach for estimating the equivalent chain length of fatty acid methyl esters in multistep temperature-programmed gas chromatography.
    Lomsugarit S; Katsuwon J; Jeyashoke N; Krisnangkura K
    J Chromatogr Sci; 2001 Nov; 39(11):468-72. PubMed ID: 11718307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative approach for the estimation of equivalent temperature in gas chromatography.
    Aryusuk K; Yensruang D; Krisnangkura K
    J Chromatogr Sci; 2004 Aug; 42(7):371-7. PubMed ID: 15355577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gibbs energy additivity approaches to QSRR in generating gas chromatographic retention time for identification of fatty acid methyl ester.
    Pojjanapornpun S; Aryusuk K; Lilitchan S; Krisnangkura K
    Anal Bioanal Chem; 2017 Apr; 409(11):2777-2789. PubMed ID: 28168549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical method for the prediction of retention times of fatty acid methyl esters in temperature-programmed capillary gas chromatography.
    Torres AG; Trugo NM; Trugo LC
    J Agric Food Chem; 2002 Jul; 50(15):4156-63. PubMed ID: 12105939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas chromatographic separation of fatty acid methyl esters on weakly polar capillary columns.
    Yamamoto K; Kinoshita A; Shibahara A
    J Chromatogr A; 2008 Feb; 1182(1):132-5. PubMed ID: 18207151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas chromatographic analysis of fatty acid methyl esters.
    Eder K
    J Chromatogr B Biomed Appl; 1995 Sep; 671(1-2):113-31. PubMed ID: 8520689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of equivalent chain lengths from two-dimensional fatty acid retention indices.
    Mjøs SA
    J Chromatogr A; 2006 Jul; 1122(1-2):249-54. PubMed ID: 16701676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of fatty acids in gas chromatography by application of different temperature and pressure programs on a single capillary column.
    Mjøs SA
    J Chromatogr A; 2003 Oct; 1015(1-2):151-61. PubMed ID: 14570328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of azadirachtin and fatty acid methyl esters of Azadirachta indica seeds by HPLC and GLC.
    Kaushik N
    Anal Bioanal Chem; 2002 Dec; 374(7-8):1199-204. PubMed ID: 12474085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of bacterial FAMEs using gas chromatography - vacuum ultraviolet spectroscopy for the identification and discrimination of bacteria.
    Santos IC; Smuts J; Choi WS; Kim Y; Kim SB; Schug KA
    Talanta; 2018 May; 182():536-543. PubMed ID: 29501189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of the fatty acids in menhaden oil as methyl esters with a highly polar ionic liquid gas chromatographic column and identification by time of flight mass spectrometry.
    Fardin-Kia AR; Delmonte P; Kramer JK; Jahreis G; Kuhnt K; Santercole V; Rader JI
    Lipids; 2013 Dec; 48(12):1279-95. PubMed ID: 24043585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved method for determining medium- and long-chain FAMEs using gas chromatography.
    Xu Z; Harvey K; Pavlina T; Dutot G; Zaloga G; Siddiqui R
    Lipids; 2010 Feb; 45(2):199-208. PubMed ID: 20082149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of fatty acid methyl esters by GC-online hydrogenation × GC.
    Delmonte P; Fardin-Kia AR; Rader JI
    Anal Chem; 2013 Feb; 85(3):1517-24. PubMed ID: 23256663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatty acid composition of seeds of Satureja thymbra and S. cuneifolia.
    Gören AC; Bilsel G; Altun M; Satil F; Dirmenci T
    Z Naturforsch C J Biosci; 2003; 58(7-8):502-4. PubMed ID: 12939035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.
    Nosheen A; Mitrevski B; Bano A; Marriott PJ
    J Chromatogr A; 2013 Oct; 1312():118-23. PubMed ID: 24034974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput capillary gas chromatography for the determination of polychlorinated biphenyls and fatty acid methyl esters in food samples.
    Sandra P; David F
    J Chromatogr Sci; 2002; 40(5):248-53. PubMed ID: 12049154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the retention pattern on ionic liquid columns for gas chromatographic analyses of fatty acid methyl esters.
    Lin CC; Wasta Z; Mjøs SA
    J Chromatogr A; 2014 Jul; 1350():83-91. PubMed ID: 24873965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of gas chromatographic retention of polyunsaturated fatty acid methyl esters.
    Mjøs SA; Grahl-Nielsen O
    J Chromatogr A; 2006 Mar; 1110(1-2):171-80. PubMed ID: 16460747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green chromatography determination of fatty acid methyl esters in biodiesel.
    Mayo CM; Alayón AB; García Rodríguez MT; Jiménez Abizanda AI; Moreno FJ
    Environ Technol; 2015; 36(13-16):1933-42. PubMed ID: 25666201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of free fatty acids and triglycerides by gas chromatography using selective esterification reactions.
    Kail BW; Link DD; Morreale BD
    J Chromatogr Sci; 2012; 50(10):934-9. PubMed ID: 22695884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.