These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 11718336)
1. Biodegradation of methyl tert-butyl ether under various substrate conditions. Pruden A; Suidan MT; Venosa AD; Wilson GJ Environ Sci Technol; 2001 Nov; 35(21):4235-41. PubMed ID: 11718336 [TBL] [Abstract][Full Text] [Related]
2. Biodegradation of methyl t-butyl ether by aerobic granules under a cosubstrate condition. Zhang LL; Chen JM; Fang F Appl Microbiol Biotechnol; 2008 Mar; 78(3):543-50. PubMed ID: 18183384 [TBL] [Abstract][Full Text] [Related]
3. Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi-batch conditions. Raynal M; Pruden A Biodegradation; 2008 Apr; 19(2):269-82. PubMed ID: 17562189 [TBL] [Abstract][Full Text] [Related]
4. Effect of benzene, toluene, ethylbenzene, and p-xylene (BTEX) mixture on biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) by pure culture UC1. Pruden A; Suidan M Biodegradation; 2004 Aug; 15(4):213-27. PubMed ID: 15473551 [TBL] [Abstract][Full Text] [Related]
5. Effects of environmental settings on MTBE removal for a mixed culture and its monoculture isolation. Lin CW; Tsai SL; Hou SN Appl Microbiol Biotechnol; 2007 Feb; 74(1):194-201. PubMed ID: 17021876 [TBL] [Abstract][Full Text] [Related]
6. Biodegradation of methyl tert-butyl ether and BTEX at varying hydraulic retention times. Sedran MA; Pruden A; Wilson GJ; Suidan MT; Venosa AD Water Environ Res; 2004; 76(1):47-55. PubMed ID: 15058464 [TBL] [Abstract][Full Text] [Related]
7. Anaerobic biodegradation of methyl tert-butyl ether under iron-reducing conditions in batch and continuous-flow cultures. Pruden A; Sedran MA; Suidan MT; Venosa AD Water Environ Res; 2005; 77(3):297-303. PubMed ID: 15969296 [TBL] [Abstract][Full Text] [Related]
8. Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co-contaminants. Wang X; Deshusses MA Biodegradation; 2007 Feb; 18(1):37-50. PubMed ID: 16733621 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of MTBE and BTEX in an aerobic fluidized bed reactor. Pruden A; Sedran M; Suidan M; Venosa A Water Sci Technol; 2003; 47(9):123-8. PubMed ID: 12830950 [TBL] [Abstract][Full Text] [Related]
10. Community characterization of anaerobic methyl tert-butyl ether (MTBE)-degrading enrichment cultures. Youngster LK; Kerkhof LJ; Häggblom MM FEMS Microbiol Ecol; 2010 May; 72(2):279-88. PubMed ID: 20180853 [TBL] [Abstract][Full Text] [Related]
11. Methyl tert-butyl ether (MTBE) degradation by a microbial consortium. Fortin NY; Morales M; Nakagawa Y; Focht DD; Deshusses MA Environ Microbiol; 2001 Jun; 3(6):407-16. PubMed ID: 11472505 [TBL] [Abstract][Full Text] [Related]
12. Biofiltration and inhibitory interactions of gaseous benzene, toluene, xylene, and methyl tert-butyl ether. Shim EH; Kim J; Cho KS; Ryu HW Environ Sci Technol; 2006 May; 40(9):3089-94. PubMed ID: 16719116 [TBL] [Abstract][Full Text] [Related]
13. Aerobic biodegradation of methyl tert-butyl ether by aquifer bacteria from leaking underground storage tank sites. Kane SR; Beller HR; Legler TC; Koester CJ; Pinkart HC; Halden RU; Happel AM Appl Environ Microbiol; 2001 Dec; 67(12):5824-9. PubMed ID: 11722940 [TBL] [Abstract][Full Text] [Related]
14. Treatment of groundwater contaminated with PAHs, gasoline hydrocarbons, and methyl tert-butyl ether in a laboratory biomass-retaining bioreactor. Zein MM; Pinto PX; Garcia-Blanco S; Suidan MT; Venosa AD Biodegradation; 2006 Feb; 17(1):57-69. PubMed ID: 16453172 [TBL] [Abstract][Full Text] [Related]
15. Response surface optimization of dissolved oxygen and nitrogen sources for the biodegradation of MTBE and BTEX. Lin CW; Yen CH; Lin HC; Tran DT Biodegradation; 2010 Jun; 21(3):393-401. PubMed ID: 19888659 [TBL] [Abstract][Full Text] [Related]
16. Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp. Lee EH; Cho KS J Hazard Mater; 2009 Aug; 167(1-3):669-74. PubMed ID: 19201538 [TBL] [Abstract][Full Text] [Related]
17. Groundwater remediation by an in situ biobarrier: a bench scale feasibility test for methyl tert-butyl ether and other gasoline compounds. Saponaro S; Negri M; Sezenna E; Bonomo L; Sorlini C J Hazard Mater; 2009 Aug; 167(1-3):545-52. PubMed ID: 19200654 [TBL] [Abstract][Full Text] [Related]
18. Aerobic biodegradation of gasoline oxygenates MTBE and TBA. Wilson GJ; Richter AP; Suidan MT; Venosa AD Water Sci Technol; 2001; 43(2):277-84. PubMed ID: 11380191 [TBL] [Abstract][Full Text] [Related]
19. Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE). Lopes Ferreira N; Malandain C; Fayolle-Guichard F Appl Microbiol Biotechnol; 2006 Sep; 72(2):252-62. PubMed ID: 16804692 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems. Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]