BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11718337)

  • 1. Transition from cometabolic to growth-linked biodegradation of vinyl chloride by a Pseudomonas sp. isolated on ethene.
    Verce MF; Ulrich RL; Freedman DL
    Environ Sci Technol; 2001 Nov; 35(21):4242-51. PubMed ID: 11718337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions.
    Verce MF; Ulrich RL; Freedman DL
    Appl Environ Microbiol; 2000 Aug; 66(8):3535-42. PubMed ID: 10919818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the kinetics of vinyl chloride cometabolism by an ethane-grown Pseudomonas sp.
    Verce MF; Freedman DL
    Biotechnol Bioeng; 2000-2001; 71(4):274-85. PubMed ID: 11291037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cometabolism of cis-1,2-dichloroethene by aerobic cultures grown on vinyl chloride as the primary substrate.
    Verce MF; Gunsch CK; Danko AS; Freedman DL
    Environ Sci Technol; 2002 May; 36(10):2171-7. PubMed ID: 12038826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate interactions during aerobic biodegradation of methane, ethene, vinyl chloride and 1,2-dichloroethenes.
    Freedman DL; Danko AS; Verce MF
    Water Sci Technol; 2001; 43(5):333-40. PubMed ID: 11379150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of linear plasmids in aerobic biodegradation of vinyl chloride.
    Danko AS; Luo M; Bagwell CE; Brigmon RL; Freedman DL
    Appl Environ Microbiol; 2004 Oct; 70(10):6092-7. PubMed ID: 15466555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism controlling the extended lag period associated with vinyl chloride starvation in Nocardioides sp. strain JS614.
    Mattes TE; Coleman NV; Chuang AS; Rogers AJ; Spain JC; Gossett JM
    Arch Microbiol; 2007 Mar; 187(3):217-26. PubMed ID: 17308936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms.
    Cupples AM; Spormann AM; McCarty PL
    Environ Sci Technol; 2004 Sep; 38(18):4768-74. PubMed ID: 15487786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling aerobic biotransformation of vinyl chloride by vinyl chloride-assimilating bacteria, methanotrophs and ethenotrophs.
    Liu Y; Ngo HH; Guo W; Sun J; Wang D; Peng L; Ni BJ
    J Hazard Mater; 2017 Jun; 332():97-103. PubMed ID: 28285111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria.
    Findlay M; Smoler DF; Fogel S; Mattes TE
    Environ Sci Technol; 2016 Apr; 50(7):3617-25. PubMed ID: 26918370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites.
    Coleman NV; Mattes TE; Gossett JM; Spain JC
    Appl Environ Microbiol; 2002 Dec; 68(12):6162-71. PubMed ID: 12450841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of aerobic, ethene-assimilating Mycobacterium strains to vinyl chloride as a growth substrate.
    Jin YO; Mattes TE
    Environ Sci Technol; 2008 Jul; 42(13):4784-9. PubMed ID: 18678006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated methodological approach reveals microbial diversity and functions in aerobic groundwater microcosms adapted to vinyl chloride.
    Liu X; Wu Y; Wilson FP; Yu K; Lintner C; Cupples AM; Mattes TE
    FEMS Microbiol Ecol; 2018 Sep; 94(9):. PubMed ID: 29945195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cometabolic Vinyl Chloride Degradation at Acidic pH Catalyzed by Acidophilic Methanotrophs Isolated from Alpine Peat Bogs.
    Choi M; Yun T; Song MJ; Kim J; Lee BH; Löffler FE; Yoon S
    Environ Sci Technol; 2021 May; 55(9):5959-5969. PubMed ID: 33843227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylene inhibition of trichloroethene and vinyl chloride reductive dechlorination.
    Pon G; Hyman MR; Semprini L
    Environ Sci Technol; 2003 Jul; 37(14):3181-8. PubMed ID: 12901668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epoxyalkane: coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of mycobacterium strain JS60.
    Coleman NV; Spain JC
    J Bacteriol; 2003 Sep; 185(18):5536-45. PubMed ID: 12949106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaugmentation potential of a vinyl chloride-assimilating Mycobacterium sp., isolated from a chloroethene-contaminated aquifer.
    Fathepure BZ; Elango VK; Singh H; Bruner MA
    FEMS Microbiol Lett; 2005 Jul; 248(2):227-34. PubMed ID: 15964716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of fluoroethene as a surrogate for aerobic vinyl chloride transformation.
    Taylor AE; Dolan ME; Bottomley PJ; Semprini L
    Environ Sci Technol; 2007 Sep; 41(18):6378-83. PubMed ID: 17948782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of missense mutations in epoxyalkane coenzyme M transferase with adaptation of Mycobacterium sp. strain JS623 to growth on vinyl chloride.
    Jin YO; Cheung S; Coleman NV; Mattes TE
    Appl Environ Microbiol; 2010 Jun; 76(11):3413-9. PubMed ID: 20363787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of vinyl chloride and cis-dichloroethene by a Ralstonia sp. strain TRW-1.
    Elango VK; Liggenstoffer AS; Fathepure BZ
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1270-5. PubMed ID: 16642331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.