These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11718360)

  • 1. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal.
    Scala F
    Environ Sci Technol; 2001 Nov; 35(21):4373-8. PubMed ID: 11718360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 1. In-duct removal.
    Scala F
    Environ Sci Technol; 2001 Nov; 35(21):4367-72. PubMed ID: 11718359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling sorbent injection for mercury control in baghouse filters: II--pilot-scale studies and model evaluation.
    Flora JR; Hargis RA; O'Dowd WJ; Pennline HW; Vidic RD
    J Air Waste Manag Assoc; 2003 Apr; 53(4):489-96. PubMed ID: 12708513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of pressure drop and flow redistribution on modeling mercury control using sorbent injection in baghouse filters.
    Flora JR; Hargis RA; O'Dowd WJ; Karash A; Pennline HW; Vidic RD
    J Air Waste Manag Assoc; 2006 Mar; 56(3):343-9. PubMed ID: 16573197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.
    Rodríguez-Pérez J; López-Antón MA; Díaz-Somoano M; García R; Martínez-Tarazona MR
    J Hazard Mater; 2013 Sep; 260():869-77. PubMed ID: 23876255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling sorbent injection for mercury control in baghouse filters: I--model development and sensitivity analysis.
    Flora JR; Hargis RA; O'Dowd WJ; Pennline HW; Vidic RD
    J Air Waste Manag Assoc; 2003 Apr; 53(4):478-88. PubMed ID: 12708512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal and speciation of mercury compounds in flue gas from a waste incinerator.
    Hwang IH; Minoya H; Matsuo T; Matsuto T; Tojo Y
    Environ Technol; 2016 Nov; 37(21):2723-30. PubMed ID: 27031438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of powdered activated carbon coating to fabrics in a hybrid filter to enhance mercury removal.
    Sung JH; Back SK; Lee ES; Jang HN; Seo YC; Kang YS; Lee MH
    J Environ Sci (China); 2019 Jun; 80():58-65. PubMed ID: 30952353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury removal from MSW incineration flue gas by mineral-based sorbents.
    Rumayor M; Svoboda K; Švehla J; Pohořelý M; Šyc M
    Waste Manag; 2018 Mar; 73():265-270. PubMed ID: 29248369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing sorbents for mercury control in coal-combustion flue gas.
    Sjostrom S; Ebner T; Ley T; Slye R; Richardson C; Machalek T; Richardson M; Chang R
    J Air Waste Manag Assoc; 2002 Aug; 52(8):902-11. PubMed ID: 12184688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Economics of an integrated approach to control SO2, NOX, HCl, and particulate emissions from power plants.
    Shemwell BE; Ergut A; Levendis YA
    J Air Waste Manag Assoc; 2002 May; 52(5):521-34. PubMed ID: 12022692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury emissions from coal combustion: modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator.
    Scala F; Clack HL
    J Hazard Mater; 2008 Apr; 152(2):616-23. PubMed ID: 17703878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Mercury Removal by Sorbent Injection.
    Meserole FB; Chang R; Carey TR; Machac J; Richardson CF
    J Air Waste Manag Assoc; 1999 Jun; 49(6):694-704. PubMed ID: 26355373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.
    Liu Y; Kelly DJ; Yang H; Lin CC; Kuznicki SM; Xu Z
    Environ Sci Technol; 2008 Aug; 42(16):6205-10. PubMed ID: 18767688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator.
    Zhong Z; Jin B; Huang Y; Zhou H; Lan J
    Waste Manag; 2006; 26(6):580-6. PubMed ID: 16054809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.
    Takahashi F; Kida A; Shimaoka T
    Sci Total Environ; 2010 Oct; 408(22):5472-7. PubMed ID: 20713298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.
    Clack HL
    J Air Waste Manag Assoc; 2017 Aug; 67(8):881-888. PubMed ID: 28287914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential hazards of brominated carbon sorbents for mercury emission control.
    Bisson TM; Xu Z
    Environ Sci Technol; 2015 Feb; 49(4):2496-502. PubMed ID: 25594726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.