These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 11718415)
1. Neuronal integration mechanisms have little effect on spike auto-correlations of cortical neurons. Sakai Y Neural Netw; 2001 Nov; 14(9):1145-52. PubMed ID: 11718415 [TBL] [Abstract][Full Text] [Related]
2. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Jackson BS Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210 [TBL] [Abstract][Full Text] [Related]
3. Superposition of many independent spike trains is generally not a Poisson process. Lindner B Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):022901. PubMed ID: 16605377 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824 [TBL] [Abstract][Full Text] [Related]
6. Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex. Graupner M; Reyes AD J Neurosci; 2013 Sep; 33(38):15075-85. PubMed ID: 24048838 [TBL] [Abstract][Full Text] [Related]
7. Theory of input spike auto- and cross-correlations and their effect on the response of spiking neurons. Moreno-Bote R; Renart A; Parga N Neural Comput; 2008 Jul; 20(7):1651-705. PubMed ID: 18254697 [TBL] [Abstract][Full Text] [Related]
8. Recurrent network models for perfect temporal integration of fluctuating correlated inputs. Okamoto H; Fukai T PLoS Comput Biol; 2009 Jun; 5(6):e1000404. PubMed ID: 19503816 [TBL] [Abstract][Full Text] [Related]
9. Coding properties of spiking neurons: reverse and cross-correlations. Gerstner W Neural Netw; 2001; 14(6-7):599-610. PubMed ID: 11665756 [TBL] [Abstract][Full Text] [Related]
10. Estimating nonstationary input signals from a single neuronal spike train. Kim H; Shinomoto S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051903. PubMed ID: 23214810 [TBL] [Abstract][Full Text] [Related]
12. Which model to use for cortical spiking neurons? Izhikevich EM IEEE Trans Neural Netw; 2004 Sep; 15(5):1063-70. PubMed ID: 15484883 [TBL] [Abstract][Full Text] [Related]
13. Synchrony detection and amplification by silicon neurons with STDP synapses. Bofill-i-petit A; Murray AF IEEE Trans Neural Netw; 2004 Sep; 15(5):1296-304. PubMed ID: 15484902 [TBL] [Abstract][Full Text] [Related]
14. Synchrony is stubborn in feedforward cortical networks. Segev I Nat Neurosci; 2003 Jun; 6(6):543-4. PubMed ID: 12771956 [No Abstract] [Full Text] [Related]
16. Solution methods for a new class of simple model neurons. Humphries MD; Gurney K Neural Comput; 2007 Dec; 19(12):3216-25. PubMed ID: 17970650 [TBL] [Abstract][Full Text] [Related]
17. Limits to the temporal fidelity of cortical spike rate signals. Mazurek ME; Shadlen MN Nat Neurosci; 2002 May; 5(5):463-71. PubMed ID: 11976706 [TBL] [Abstract][Full Text] [Related]
18. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559 [TBL] [Abstract][Full Text] [Related]
19. A comparison of descriptive models of a single spike train by information-geometric measure. Nakahara H; Amari S; Richmond BJ Neural Comput; 2006 Mar; 18(3):545-68. PubMed ID: 16483407 [TBL] [Abstract][Full Text] [Related]
20. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Wang XJ J Neurophysiol; 1998 Mar; 79(3):1549-66. PubMed ID: 9497431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]