These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11718481)

  • 1. In vitro degradation and erosion of degradable, segmented polyurethanes containing an amino acid-based chain extender.
    Skarja GA; Woodhouse KA
    J Biomater Sci Polym Ed; 2001; 12(8):851-73. PubMed ID: 11718481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of degradable polyurethane elastomers containing and amino acid-based chain extender.
    Skarja GA; Woodhouse KA
    J Biomater Sci Polym Ed; 1998; 9(3):271-95. PubMed ID: 9556762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation.
    Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA
    Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of biodegradable polyurethane microfibers for tissue engineering.
    Rockwood DN; Woodhouse KA; Fromstein JD; Chase DB; Rabolt JF
    J Biomater Sci Polym Ed; 2007; 18(6):743-58. PubMed ID: 17623555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of biodegradation products formed by L-phenylalanine based segmented polyurethaneureas.
    Elliott SL; Fromstein JD; Santerre JP; Woodhous KA
    J Biomater Sci Polym Ed; 2002; 13(6):691-711. PubMed ID: 12182552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-biomaterial interactions: effect of biosystems on degradation of polyurethanes.
    Santerre JP; Labow RS; Adams GA
    J Biomed Mater Res; 1993 Jan; 27(1):97-109. PubMed ID: 8421004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation.
    Takahara A; Coury AJ; Hergenrother RW; Cooper SL
    J Biomed Mater Res; 1991 Mar; 25(3):341-56. PubMed ID: 2026639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications.
    Sarkar D; Yang JC; Gupta AS; Lopina ST
    J Biomed Mater Res A; 2009 Jul; 90(1):263-71. PubMed ID: 18496869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastomeric biodegradable polyurethane blends for soft tissue applications.
    Fromstein JD; Woodhouse KA
    J Biomater Sci Polym Ed; 2002; 13(4):391-406. PubMed ID: 12160300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutrophil-mediated degradation of segmented polyurethanes.
    Labow RS; Erfle DJ; Santerre JP
    Biomaterials; 1995 Jan; 16(1):51-9. PubMed ID: 7718693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes.
    Santerre JP; Labow RS; Duguay DG; Erfle D; Adams GA
    J Biomed Mater Res; 1994 Oct; 28(10):1187-99. PubMed ID: 7829548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and blood-contacting properties of polyurethanes based on a sulfonic acid-containing diol chain extender.
    Okkema AZ; Visser SA; Cooper SL
    J Biomed Mater Res; 1991 Nov; 25(11):1371-95. PubMed ID: 1797809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry.
    Tang YW; Labow RS; Santerre JP
    J Biomed Mater Res; 2001 Dec; 57(4):597-611. PubMed ID: 11553891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation behavior and biocompatibility of PEG/PANI-derived polyurethane co-polymers.
    Luo YL; Nan YF; Xu F; Chen YS; Zhao P
    J Biomater Sci Polym Ed; 2010; 21(8-9):1143-72. PubMed ID: 20507713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro degradation of a poly(ether urethane) by trypsin.
    Bouvier M; Chawla AS; Hinberg I
    J Biomed Mater Res; 1991 Jun; 25(6):773-89. PubMed ID: 1874760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutrophil adhesion on phosphorylcholine-containing polyurethanes.
    Yung LY; Cooper SL
    Biomaterials; 1998; 19(1-3):31-40. PubMed ID: 9678847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro exposure of a novel polyesterurethane graft to enzymes: a study of the biostability of the Vascugraft arterial prosthesis.
    Zhang Z; King M; Guidoin R; Therrien M; Doillon C; Diehl-Jones WL; Huebner E
    Biomaterials; 1994 Nov; 15(14):1129-44. PubMed ID: 7893915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the elasticity and cytophilicity of biodegradable polyurethane by changing chain extender.
    Zhang C; Zhang N; Wen X
    J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):335-44. PubMed ID: 16767730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.