These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 11718782)

  • 41. Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccadic burst cells in superior colliculus in monkey.
    Keller EL; Edelman JA
    J Neurophysiol; 1994 Dec; 72(6):2754-70. PubMed ID: 7897487
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence that the superior colliculus participates in the feedback control of saccadic eye movements.
    Soetedjo R; Kaneko CR; Fuchs AF
    J Neurophysiol; 2002 Feb; 87(2):679-95. PubMed ID: 11826037
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Frontal Eye Field Inactivation Reduces Saccade Preparation in the Superior Colliculus but Does Not Alter How Preparatory Activity Relates to Saccades of a Given Latency.
    Dash S; Peel TR; Lomber SG; Corneil BD
    eNeuro; 2018; 5(2):. PubMed ID: 29766038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Causal Role of Neural Signals Transmitted From the Frontal Eye Field to the Superior Colliculus in Saccade Generation.
    Matsumoto M; Inoue KI; Takada M
    Front Neural Circuits; 2018; 12():69. PubMed ID: 30210307
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Instantaneous Midbrain Control of Saccade Velocity.
    Smalianchuk I; Jagadisan UK; Gandhi NJ
    J Neurosci; 2018 Nov; 38(47):10156-10167. PubMed ID: 30291204
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interaction of the frontal eye field and superior colliculus for saccade generation.
    Hanes DP; Wurtz RH
    J Neurophysiol; 2001 Feb; 85(2):804-15. PubMed ID: 11160514
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Macaque dorsolateral prefrontal cortex does not suppress saccade-related activity in the superior colliculus.
    Johnston K; Koval MJ; Lomber SG; Everling S
    Cereb Cortex; 2014 May; 24(5):1373-88. PubMed ID: 23307633
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 49. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2004 Mar; 91(3):1403-23. PubMed ID: 14573557
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dissociation of visual and saccade-related responses in superior colliculus neurons.
    Mays LE; Sparks DL
    J Neurophysiol; 1980 Jan; 43(1):207-32. PubMed ID: 6766178
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stimulation-evoked saccades from the dorsomedial frontal cortex of the rhesus monkey following lesions of the frontal eye fields and superior colliculus.
    Tehovnik EJ; Lee K; Schiller PH
    Exp Brain Res; 1994; 98(2):179-90. PubMed ID: 8050505
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Superior colliculus activity related to concurrent processing of saccade goals in a visual search task.
    McPeek RM; Keller EL
    J Neurophysiol; 2002 Apr; 87(4):1805-15. PubMed ID: 11929902
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex.
    Funahashi S; Bruce CJ; Goldman-Rakic PS
    J Neurophysiol; 1991 Jun; 65(6):1464-83. PubMed ID: 1875255
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional properties of corticotectal neurons in the monkey's frontal eye field.
    Segraves MA; Goldberg ME
    J Neurophysiol; 1987 Dec; 58(6):1387-419. PubMed ID: 3437337
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Collicular involvement in a saccadic colour discrimination task.
    Ottes FP; Van Gisbergen JA; Eggermont JJ
    Exp Brain Res; 1987; 66(3):465-78. PubMed ID: 3609194
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Target selection for saccadic eye movements: prelude activity in the superior colliculus during a direction-discrimination task.
    Horwitz GD; Newsome WT
    J Neurophysiol; 2001 Nov; 86(5):2543-58. PubMed ID: 11698541
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Discharge properties of monkey tectoreticular neurons.
    Rodgers CK; Munoz DP; Scott SH; Paré M
    J Neurophysiol; 2006 Jun; 95(6):3502-11. PubMed ID: 16641382
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Minimal synaptic delay in the saccadic output pathway of the superior colliculus studied in awake monkey.
    Miyashita N; Hikosaka O
    Exp Brain Res; 1996 Nov; 112(2):187-96. PubMed ID: 8951387
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus.
    Gandhi NJ; Keller EL
    J Neurophysiol; 1999 Dec; 82(6):3254-67. PubMed ID: 10601458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.