These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 11718844)

  • 1. Glycinergic/GABAergic synapses in the lateral superior olive are excitatory in neonatal C57Bl/6J mice.
    Kullmann PH; Kandler K
    Brain Res Dev Brain Res; 2001 Nov; 131(1-2):143-7. PubMed ID: 11718844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycinergic and GABAergic calcium responses in the developing lateral superior olive.
    Kullmann PH; Ene FA; Kandler K
    Eur J Neurosci; 2002 Apr; 15(7):1093-104. PubMed ID: 11982621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre- and postsynaptic properties of glutamatergic transmission in the immature inhibitory MNTB-LSO pathway.
    Case DT; Gillespie DC
    J Neurophysiol; 2011 Nov; 106(5):2570-9. PubMed ID: 21832038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation.
    Kim G; Kandler K
    Nat Neurosci; 2003 Mar; 6(3):282-90. PubMed ID: 12577063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory synapses in the developing auditory system are glutamatergic.
    Gillespie DC; Kim G; Kandler K
    Nat Neurosci; 2005 Mar; 8(3):332-8. PubMed ID: 15746915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABA is a modulator, rather than a classical transmitter, in the medial nucleus of the trapezoid body-lateral superior olive sound localization circuit.
    Fischer AU; Müller NIC; Deller T; Del Turco D; Fisch JO; Griesemer D; Kattler K; Maraslioglu A; Roemer V; Xu-Friedman MA; Walter J; Friauf E
    J Physiol; 2019 Apr; 597(8):2269-2295. PubMed ID: 30776090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gain adjustment of inhibitory synapses in the auditory system.
    Kotak VC; Sanes DH
    Biol Cybern; 2003 Nov; 89(5):363-70. PubMed ID: 14669016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental expression of inhibitory synaptic long-term potentiation in the lateral superior olive.
    Kotak VC; Sanes DH
    Front Neural Circuits; 2014; 8():67. PubMed ID: 24994969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation by Axon Terminal GABA Spillover in a Sound Localization Circuit.
    Weisz CJ; Rubio ME; Givens RS; Kandler K
    J Neurosci; 2016 Jan; 36(3):911-25. PubMed ID: 26791220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of metabotropic glutamate receptor-mediated heterosynaptic inhibition of developing MNTB-LSO inhibitory synapses.
    Nishimaki T; Jang IS; Ishibashi H; Yamaguchi J; Nabekura J
    Eur J Neurosci; 2007 Jul; 26(2):323-30. PubMed ID: 17623021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic Ca2+ responses in neonatal lateral superior olive neurons elicited by glycinergic/GABAergic synapses and action potentials.
    Kullmann PH; Kandler K
    Neuroscience; 2008 Jun; 154(1):338-45. PubMed ID: 18400406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitatory action of an immature glycinergic/GABAergic sound localization pathway.
    Kandler K; Kullmann PH; Ene FA; Kim G
    Physiol Behav; 2002 Dec; 77(4-5):583-7. PubMed ID: 12527003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term potentiation of glycinergic synapses by semi-natural stimulation patterns during tonotopic map refinement.
    Bach EC; Kandler K
    Sci Rep; 2020 Oct; 10(1):16899. PubMed ID: 33037263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway.
    Alamilla J; Gillespie DC
    PLoS One; 2013; 8(9):e75688. PubMed ID: 24069436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A developmental shift from GABAergic to glycinergic transmission in the central auditory system.
    Kotak VC; Korada S; Schwartz IR; Sanes DH
    J Neurosci; 1998 Jun; 18(12):4646-55. PubMed ID: 9614239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deafferentation weakens excitatory synapses in the developing central auditory system.
    Kotak VC; Sanes DH
    Eur J Neurosci; 1997 Nov; 9(11):2340-7. PubMed ID: 9464928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topographic map refinement and synaptic strengthening of a sound localization circuit require spontaneous peripheral activity.
    Müller NIC; Sonntag M; Maraslioglu A; Hirtz JJ; Friauf E
    J Physiol; 2019 Nov; 597(22):5469-5493. PubMed ID: 31529505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive.
    Smith AJ; Owens S; Forsythe ID
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):681-98. PubMed ID: 11118498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of synaptic fidelity and action potential robustness at an inhibitory sound localization circuit: effects of otoferlin-related deafness.
    Müller NIC; Paulußen I; Hofmann LN; Fisch JO; Singh A; Friauf E
    J Physiol; 2022 May; 600(10):2461-2497. PubMed ID: 35439328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological properties of neurons in the mouse superior olive: membrane characteristics and postsynaptic responses studied in vitro.
    Wu SH; Kelly JB
    J Neurophysiol; 1991 Feb; 65(2):230-46. PubMed ID: 2016640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.