BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 11719555)

  • 1. Rapid dynamics of the microtubule binding of ensconsin in vivo.
    Bulinski JC; Odde DJ; Howell BJ; Salmon TD; Waterman-Storer CM
    J Cell Sci; 2001 Nov; 114(Pt 21):3885-97. PubMed ID: 11719555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GFP chimeras of E-MAP-115 (ensconsin) domains mimic behavior of the endogenous protein in vitro and in vivo.
    Bulinski JC; Gruber D; Faire K; Prasad P; Chang W
    Cell Struct Funct; 1999 Oct; 24(5):313-20. PubMed ID: 15216888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E-MAP-115 (ensconsin) associates dynamically with microtubules in vivo and is not a physiological modulator of microtubule dynamics.
    Faire K; Waterman-Storer CM; Gruber D; Masson D; Salmon ED; Bulinski JC
    J Cell Sci; 1999 Dec; 112 ( Pt 23)():4243-55. PubMed ID: 10564643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abundant expression of the microtubule-associated protein, ensconsin (E-MAP-115), alters the cellular response to Taxol.
    Gruber D; Faire K; Bulinski JC
    Cell Motil Cytoskeleton; 2001 Jul; 49(3):115-29. PubMed ID: 11668581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of MAP 4 function in living cells using green fluorescent protein (GFP) chimeras.
    Olson KR; McIntosh JR; Olmsted JB
    J Cell Biol; 1995 Aug; 130(3):639-50. PubMed ID: 7622564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CLIP-170 highlights growing microtubule ends in vivo.
    Perez F; Diamantopoulos GS; Stalder R; Kreis TE
    Cell; 1999 Feb; 96(4):517-27. PubMed ID: 10052454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The microtubule-binding protein ensconsin is an essential cofactor of kinesin-1.
    Barlan K; Lu W; Gelfand VI
    Curr Biol; 2013 Feb; 23(4):317-22. PubMed ID: 23394833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations at phosphorylation sites of Xenopus microtubule-associated protein 4 affect its microtubule-binding ability and chromosome movement during mitosis.
    Shiina N; Tsukita S
    Mol Biol Cell; 1999 Mar; 10(3):597-608. PubMed ID: 10069806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics.
    Ookata K; Hisanaga S; Bulinski JC; Murofushi H; Aizawa H; Itoh TJ; Hotani H; Okumura E; Tachibana K; Kishimoto T
    J Cell Biol; 1995 Mar; 128(5):849-62. PubMed ID: 7876309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of microtubule organization during interphase and M phase.
    Shiina N; Tsukita S
    Cell Struct Funct; 1999 Oct; 24(5):385-91. PubMed ID: 15216896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drosophila ensconsin promotes productive recruitment of Kinesin-1 to microtubules.
    Sung HH; Telley IA; Papadaki P; Ephrussi A; Surrey T; Rørth P
    Dev Cell; 2008 Dec; 15(6):866-76. PubMed ID: 19081075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual control of Kinesin-1 recruitment to microtubules by Ensconsin in
    Métivier M; Monroy BY; Gallaud E; Caous R; Pascal A; Richard-Parpaillon L; Guichet A; Ori-McKenney KM; Giet R
    Development; 2019 Apr; 146(8):. PubMed ID: 30936181
    [No Abstract]   [Full Text] [Related]  

  • 13. Dynamics of interphase microtubules in Schizosaccharomyces pombe.
    Drummond DR; Cross RA
    Curr Biol; 2000 Jun; 10(13):766-75. PubMed ID: 10898975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live imaging of the cytoskeleton in early cleavage-stage zebrafish embryos.
    Wühr M; Obholzer ND; Megason SG; Detrich HW; Mitchison TJ
    Methods Cell Biol; 2011; 101():1-18. PubMed ID: 21550437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of ensconsin, a novel microtubule stabilizing protein.
    Bulinski JC; Bossler A
    J Cell Sci; 1994 Oct; 107 ( Pt 10)():2839-49. PubMed ID: 7876351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules.
    Mimori-Kiyosue Y; Shiina N; Tsukita S
    Curr Biol; 2000 Jul; 10(14):865-8. PubMed ID: 10899006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. M phase-specific kinetochore proteins in fission yeast: microtubule-associating Dis1 and Mtc1 display rapid separation and segregation during anaphase.
    Nakaseko Y; Goshima G; Morishita J; Yanagida M
    Curr Biol; 2001 Apr; 11(8):537-49. PubMed ID: 11369198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of GFP tags on the localization of EB1 and EB1 fragments in vivo.
    Skube SB; Chaverri JM; Goodson HV
    Cytoskeleton (Hoboken); 2010 Jan; 67(1):1-12. PubMed ID: 19701929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MAP1a associated light chain 3 increases microtubule stability by suppressing microtubule dynamics.
    Faller EM; Villeneuve TS; Brown DL
    Mol Cell Neurosci; 2009 May; 41(1):85-93. PubMed ID: 19233279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GMAP-210, A cis-Golgi network-associated protein, is a minus end microtubule-binding protein.
    Infante C; Ramos-Morales F; Fedriani C; Bornens M; Rios RM
    J Cell Biol; 1999 Apr; 145(1):83-98. PubMed ID: 10189370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.