These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 11719576)
1. Functional diversification of lepidopteran opsins following gene duplication. Briscoe AD Mol Biol Evol; 2001 Dec; 18(12):2270-9. PubMed ID: 11719576 [TBL] [Abstract][Full Text] [Related]
2. Reconstructing the ancestral butterfly eye: focus on the opsins. Briscoe AD J Exp Biol; 2008 Jun; 211(Pt 11):1805-13. PubMed ID: 18490396 [TBL] [Abstract][Full Text] [Related]
3. Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies. Frentiu FD; Bernard GD; Sison-Mangus MP; Brower AV; Briscoe AD Mol Biol Evol; 2007 Sep; 24(9):2016-28. PubMed ID: 17609538 [TBL] [Abstract][Full Text] [Related]
4. Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. Briscoe AD J Mol Evol; 2000 Aug; 51(2):110-21. PubMed ID: 10948267 [TBL] [Abstract][Full Text] [Related]
5. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Chang BS; Crandall KA; Carulli JP; Hartl DL Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634 [TBL] [Abstract][Full Text] [Related]
6. Opsin Gene Duplication in Lepidoptera: Retrotransposition, Sex Linkage, and Gene Expression. Mulhair PO; Crowley L; Boyes DH; Lewis OT; Holland PWH Mol Biol Evol; 2023 Nov; 40(11):. PubMed ID: 37935057 [TBL] [Abstract][Full Text] [Related]
7. Retention of duplicated long-wavelength opsins in mosquito lineages by positive selection and differential expression. Giraldo-Calderón GI; Zanis MJ; Hill CA BMC Evol Biol; 2017 Mar; 17(1):84. PubMed ID: 28320313 [TBL] [Abstract][Full Text] [Related]
8. Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins. Porter ML; Cronin TW; McClellan DA; Crandall KA Mol Biol Evol; 2007 Jan; 24(1):253-68. PubMed ID: 17053049 [TBL] [Abstract][Full Text] [Related]
9. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species. Briscoe AD; Bernard GD J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761 [TBL] [Abstract][Full Text] [Related]
10. Early duplication and functional diversification of the opsin gene family in insects. Spaethe J; Briscoe AD Mol Biol Evol; 2004 Aug; 21(8):1583-94. PubMed ID: 15155799 [TBL] [Abstract][Full Text] [Related]
11. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. Sison-Mangus MP; Bernard GD; Lampel J; Briscoe AD J Exp Biol; 2006 Aug; 209(Pt 16):3079-90. PubMed ID: 16888057 [TBL] [Abstract][Full Text] [Related]
12. Contrasting modes of evolution of the visual pigments in Heliconius butterflies. Yuan F; Bernard GD; Le J; Briscoe AD Mol Biol Evol; 2010 Oct; 27(10):2392-405. PubMed ID: 20478921 [TBL] [Abstract][Full Text] [Related]
13. Rod and cone opsin families differ in spectral tuning domains but not signal transducing domains as judged by saturated evolutionary trace analysis. Carleton KL; Spady TC; Cote RH J Mol Evol; 2005 Jul; 61(1):75-89. PubMed ID: 15988624 [TBL] [Abstract][Full Text] [Related]
14. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders. Koyanagi M; Nagata T; Katoh K; Yamashita S; Tokunaga F J Mol Evol; 2008 Feb; 66(2):130-7. PubMed ID: 18217181 [TBL] [Abstract][Full Text] [Related]
15. Adaptive evolution of color vision as seen through the eyes of butterflies. Frentiu FD; Bernard GD; Cuevas CI; Sison-Mangus MP; Prudic KL; Briscoe AD Proc Natl Acad Sci U S A; 2007 May; 104 Suppl 1(Suppl 1):8634-40. PubMed ID: 17494749 [TBL] [Abstract][Full Text] [Related]
16. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies. Liénard MA; Bernard GD; Allen A; Lassance JM; Song S; Childers RR; Yu N; Ye D; Stephenson A; Valencia-Montoya WA; Salzman S; Whitaker MRL; Calonje M; Zhang F; Pierce NE Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33547236 [TBL] [Abstract][Full Text] [Related]
17. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies. Wakakuwa M; Terakita A; Koyanagi M; Stavenga DG; Shichida Y; Arikawa K PLoS One; 2010 Nov; 5(11):e15015. PubMed ID: 21124838 [TBL] [Abstract][Full Text] [Related]
18. Structural differences and differential expression among rhabdomeric opsins reveal functional change after gene duplication in the bay scallop, Argopecten irradians (Pectinidae). Porath-Krause AJ; Pairett AN; Faggionato D; Birla BS; Sankar K; Serb JM BMC Evol Biol; 2016 Nov; 16(1):250. PubMed ID: 27855630 [TBL] [Abstract][Full Text] [Related]
19. The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green. Sison-Mangus MP; Briscoe AD; Zaccardi G; Knüttel H; Kelber A J Exp Biol; 2008 Feb; 211(Pt 3):361-9. PubMed ID: 18203991 [TBL] [Abstract][Full Text] [Related]
20. Molecular cloning of the salamander red and blue cone visual pigments. Xu L; Hazard ES; Lockman DK; Crouch RK; Ma J Mol Vis; 1998 Jul; 4():10. PubMed ID: 9675215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]