BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11719810)

  • 1. Crystal structure of the tricorn protease reveals a protein disassembly line.
    Brandstetter H; Kim JS; Groll M; Huber R
    Nature; 2001 Nov; 414(6862):466-70. PubMed ID: 11719810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the processive protein degradation by tricorn protease.
    Brandstetter H; Kim JS; Groll M; Göttig P; Huber R
    Biol Chem; 2002; 383(7-8):1157-65. PubMed ID: 12437101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of the tricorn interacting factor F3 from Thermoplasma acidophilum, a zinc aminopeptidase in three different conformations.
    Kyrieleis OJ; Goettig P; Kiefersauer R; Huber R; Brandstetter H
    J Mol Biol; 2005 Jun; 349(4):787-800. PubMed ID: 15893768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capsids of tricorn protease studied by electron cryomicroscopy.
    Walz J; Koster AJ; Tamura T; Baumeister W
    J Struct Biol; 1999 Dec; 128(1):65-8. PubMed ID: 10600560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray snapshots of peptide processing in mutants of tricorn-interacting factor F1 from Thermoplasma acidophilum.
    Goettig P; Brandstetter H; Groll M; Göhring W; Konarev PV; Svergun DI; Huber R; Kim JS
    J Biol Chem; 2005 Sep; 280(39):33387-96. PubMed ID: 15994304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification, crystallization, and preliminary X-ray diffraction analysis of the Tricorn protease hexamer from Thermoplasma acidophilum.
    Bosch J; Tamura T; Bourenkov G; Baumeister W; Essen LO
    J Struct Biol; 2001 Apr; 134(1):83-7. PubMed ID: 11469880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tricorn protease--the core of a modular proteolytic system.
    Tamura T; Tamura N; Cejka Z; Hegerl R; Lottspeich F; Baumeister W
    Science; 1996 Nov; 274(5291):1385-9. PubMed ID: 8910281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of the tricorn-interacting aminopeptidase F1 with different ligands explain its catalytic mechanism.
    Goettig P; Groll M; Kim JS; Huber R; Brandstetter H
    EMBO J; 2002 Oct; 21(20):5343-52. PubMed ID: 12374735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR.
    Religa TL; Sprangers R; Kay LE
    Science; 2010 Apr; 328(5974):98-102. PubMed ID: 20360109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tricorn protease exists as an icosahedral supermolecule in vivo.
    Walz J; Tamura T; Tamura N; Grimm R; Baumeister W; Koster AJ
    Mol Cell; 1997 Dec; 1(1):59-65. PubMed ID: 9659903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Navigation inside a protease: substrate selection and product exit in the tricorn protease from Thermoplasma acidophilum.
    Kim JS; Groll M; Musiol HJ; Behrendt R; Kaiser M; Moroder L; Huber R; Brandstetter H
    J Mol Biol; 2002 Dec; 324(5):1041-50. PubMed ID: 12470958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tricorn protease in bacteria: characterization of the enzyme from Streptomyces coelicolor.
    Tamura N; Pfeifer G; Baumeister W; Tamura T
    Biol Chem; 2001 Mar; 382(3):449-58. PubMed ID: 11347893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and co-expression of Thermoplasma volcanium proteasome subunit genes.
    Kocabiyik S; Ozdemir I; Zwickl P; Ozdoğan S
    Protein Expr Purif; 2010 Oct; 73(2):223-30. PubMed ID: 20460155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of non-conserved distal carboxyl terminal amino acids in two peptidases belonging to the M1 family: Thermoplasma acidophilum Tricorn interacting factor F2 and Escherichia coli Peptidase N.
    Kumar A; Bhosale M; Reddy S; Srinivasan N; Nandi D
    Biochimie; 2009 Sep; 91(9):1145-55. PubMed ID: 19527767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the beta-apical domain of the thermosome reveals structural plasticity in the protrusion region.
    Bosch G; Baumeister W; Essen LO
    J Mol Biol; 2000 Aug; 301(1):19-25. PubMed ID: 10926489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of TET protease reveals complementary protein degradation pathways in prokaryotes.
    Borissenko L; Groll M
    J Mol Biol; 2005 Mar; 346(5):1207-19. PubMed ID: 15713475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of tobacco etch virus protease shows the protein C terminus bound within the active site.
    Nunn CM; Jeeves M; Cliff MJ; Urquhart GT; George RR; Chao LH; Tscuchia Y; Djordjevic S
    J Mol Biol; 2005 Jul; 350(1):145-55. PubMed ID: 15919091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unique lipoylation system in the Archaea. Lipoylation in Thermoplasma acidophilum requires two proteins.
    Posner MG; Upadhyay A; Bagby S; Hough DW; Danson MJ
    FEBS J; 2009 Aug; 276(15):4012-22. PubMed ID: 19594830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum.
    Rockel B; Jakana J; Chiu W; Baumeister W
    J Mol Biol; 2002 Apr; 317(5):673-81. PubMed ID: 11955016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of TA0895, a MoaD homologue from Thermoplasma acidophilum.
    Jung J; Yeo IY; Hong E; Yee A; Arrowsmith CH; Lee W
    Proteins; 2006 Dec; 65(4):1055-7. PubMed ID: 17019685
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.