These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11720091)

  • 1. Inhibition of microsomal ATPases by high concentration of Mg2+ in tracheal epithelial cells.
    Cho KH; Sakong J; Kim YK
    Life Sci; 2001 Nov; 69(24):2875-86. PubMed ID: 11720091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vanadate-sensitive microsomal ATPases and microsomal 45Ca2+ uptake in tracheal epithelial cells.
    Kim YK; Sakong J; Cho KH; Lee CO
    J Biochem; 1998 Dec; 124(6):1094-100. PubMed ID: 9832613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of calcium-activated and magnesium-activated ATPases of brain nerve endings.
    Lin SC; Way EL
    J Neurochem; 1984 Jun; 42(6):1697-706. PubMed ID: 6144728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum.
    Jones LR
    Biochim Biophys Acta; 1979 Oct; 557(1):230-42. PubMed ID: 162038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Ca2+- and Mg2+-dependent ATPases in Electrophorus electroplax microsomes.
    Amende LM; Chock SP; Albers RW
    J Neurochem; 1983 Apr; 40(4):1040-7. PubMed ID: 6131930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Ca2(+)-activated, Mg2(+)-dependent ATPase with high affinities for both Ca2+ and Mg2+ in vascular smooth muscle microsomes: comparison with plasma membrane Ca2(+)-pump ATPase.
    Sun HT; Yoshida Y; Imai S
    J Biochem; 1990 Nov; 108(5):730-6. PubMed ID: 1964453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of microsomal ATPase activities: a comparison between the inorganic phosphate-release assay and the NADH-coupled enzyme assay.
    Missiaen L; Wuytack F; Kanmura Y; Van Belle H; Wynants J; Minten J; Casteels R
    Biochim Biophys Acta; 1989 Jan; 990(1):40-4. PubMed ID: 2536560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+- or Mg2+-dependent enzymatic ATP hydrolysis associated with the microsomal fraction of frog sciatic nerves.
    Edström A; Hanson M; Prus K; Wallin M
    J Neurochem; 1980 Aug; 35(2):297-303. PubMed ID: 6108993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of microsomal ATPases from developing human placenta.
    Mukherjea M; Chakraborti AS; Misra S
    Biochem Med Metab Biol; 1986 Apr; 35(2):115-9. PubMed ID: 3011035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of Mg2+ on rat liver microsomal Ca2+ sequestration.
    Zhang GH; Kraus-Friedmann N
    Cell Calcium; 1990; 11(6):397-403. PubMed ID: 2144211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ovarian steroids on membrane ATPase activities in microsomes (microsomal fractions) from rat myometrium. Inhibition of a component of the Mg2+-activated ATPase by Ca2+-calmodulin and by oxytocin.
    Missiaen L; Wuytack F; Casteels R
    Biochem J; 1988 Mar; 250(2):571-7. PubMed ID: 2833247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport.
    Fleschner CR; Kraus-Friedmann N
    Eur J Biochem; 1986 Jan; 154(2):313-20. PubMed ID: 2935394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylated intermediates of two hepatic microsomal ATPases.
    Fleschner CR; Kraus-Friedmann N; Wibert GJ
    Biochem J; 1985 Mar; 226(3):839-45. PubMed ID: 3157373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+,Mg2+-ATPase of microsomal membranes from bovine aortic smooth muscle. Identification and characterization of an acid-stable phosphorylated intermediate of the Ca2+,Mg2+-ATPase.
    Sumida M; Okuda H; Hamada M
    J Biochem; 1984 Nov; 96(5):1365-74. PubMed ID: 6151948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of a (Ca2+ + Mg2+)-ATPase activity probably related to Ca2+ transport in the microsomal fraction of porcine coronary artery smooth muscle.
    Wuytack F; Casteels R
    Biochim Biophys Acta; 1980 Jan; 595(2):257-63. PubMed ID: 6444357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of two Ca-ATPases in gill epithelium from the killifish (Fundulus heteroclitus).
    Paul MJ; Burdick CJ
    Comp Biochem Physiol B; 1989; 93(4):889-97. PubMed ID: 2530036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mg2+ and Ca2+ activated ATPase activities of bovine aortic microsomes.
    Barron JT; Disalvo J
    Proc Soc Exp Biol Med; 1979 Feb; 160(2):258-62. PubMed ID: 154106
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of nicorandil on the cytosolic free calcium concentration and microsomal (Ca2+ + Mg2+)-ATPase activity of vascular smooth muscle cells.
    Morimoto S; Koh E; Fukuo K; Imanaka S; Hironaka T; Shiraishi T; Yamamoto H; Itoh K; Onishi T; Kumahara Y
    J Cardiovasc Pharmacol; 1987; 10 Suppl 8():S31-7. PubMed ID: 2447422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial purification of (Ca2+ + Mg2+)-dependent ATPase from pig smooth muscle and reconstitution of an ATP-dependent Ca2+-transport system.
    Wuytack F; De Schutter G; Casteels R
    Biochem J; 1981 Aug; 198(2):265-71. PubMed ID: 6119983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.