These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 11720262)

  • 1. Stability evaluation of a cement based waste form to microbially induced degradation.
    Idachaba MA; Nyavor K; Egiebor NO; Rogers RD
    Waste Manag Res; 2001 Aug; 19(4):284-91. PubMed ID: 11720262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of microbial stability of simulated solid and liquid waste forms using a refined biofilm formation method.
    Idachaba MA; Nyavor K; Egiebor NO
    J Hazard Mater; 2002 Mar; 90(3):279-95. PubMed ID: 11893426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial influenced degradation of solidified waste binder.
    Knight J; Cheeseman C; Rogers R
    Waste Manag; 2002; 22(2):187-93. PubMed ID: 12003147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a biofilm formation method for waste forms stability evaluation.
    Idachaba MA; Nyavor K; Egiebor NO; Rogers RD
    J Hazard Mater; 2000 Oct; 77(1-3):133-47. PubMed ID: 10946124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture.
    Wang J; Bai J; Xu J; Liang B
    J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans.
    Wang YS; Pan ZY; Lang JM; Xu JM; Zheng YG
    J Hazard Mater; 2007 Aug; 147(1-2):319-24. PubMed ID: 17275185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbially-influenced degradation of solidified/stabilized metal waste.
    Carmalin Sophia A; Swaminathan K; Sandhya S
    Bioresour Technol; 2007 Sep; 98(13):2562-7. PubMed ID: 17107784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.
    Sharma M; Bisht V; Singh B; Jain P; Mandal AK; Lal B; Sarma PM
    Indian J Exp Biol; 2015 Jun; 53(6):388-94. PubMed ID: 26155679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of E. coli biofilm as a protective barrier against microbiologically influenced deterioration of concrete (MICD) under mesophilic temperatures.
    Soleimani S; Ormeci B; Isgor OB
    Water Sci Technol; 2013; 68(2):303-10. PubMed ID: 23863421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial treatment of sulfur-contaminated industrial wastes.
    Gómez-Ramírez M; Zarco-Tovar K; Aburto J; de León RG; Rojas-Avelizapa NG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(2):228-32. PubMed ID: 24171423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs).
    Liang G; Tang J; Liu W; Zhou Q
    J Hazard Mater; 2013 Apr; 250-251():238-45. PubMed ID: 23454463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11.
    Lee EY; Lee NY; Cho KS; Ryu HW
    J Biosci Bioeng; 2006 Apr; 101(4):309-14. PubMed ID: 16716938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of two-step bioleaching of spent petroleum refinery catalyst by Acidithiobacillus thiooxidans using response surface methodology.
    Srichandan H; Pathak A; Kim DJ; Lee SW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1740-53. PubMed ID: 25320861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denitrification of industrial wastewater with sulfur and limestone packed column.
    Nugroho R; Takanashi H; Hirata M; Hano T
    Water Sci Technol; 2002; 46(11-12):99-104. PubMed ID: 12523739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial stability evaluation of cement-based waste forms at different waste to cement ratio.
    Idachaba MA; Nyavor K; Egiebor NO
    J Hazard Mater; 2003 Jan; 96(2-3):331-40. PubMed ID: 12493216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaching behavior and immobilization of heavy metals in solidified/stabilized products.
    Malviya R; Chaudhary R
    J Hazard Mater; 2006 Sep; 137(1):207-17. PubMed ID: 16504383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A refinement of the biofilm formation method for waste forms stability evaluation.
    Idachaba MA; Nyavor K; Egiebor NO; Rogers RD
    J Hazard Mater; 2001 Jun; 84(1):95-106. PubMed ID: 11376887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic analysis of data obtained from studies on microbial degradation of cement waste forms, using shrinking core models.
    Idachaba MA; Nyavor K; Egiebor NO
    J Hazard Mater; 2003 Apr; 99(1):57-69. PubMed ID: 12686024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental assessment of cement/foundry sludge products.
    Ruiz MC; Andrés A; Irabien A
    Environ Technol; 2003 May; 24(5):589-96. PubMed ID: 12803251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of radioactive waste by cementation with purified kaolin clay.
    Osmanlioglu AE
    Waste Manag; 2002; 22(5):481-3. PubMed ID: 12092756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.