These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11720262)

  • 21. Solidification of waste steel foundry dust with Portland cement.
    Skvára F; Kastánek F; Pavelková I; Solcová O; Maléterová Y; Schneider P
    J Hazard Mater; 2002 Jan; 89(1):67-81. PubMed ID: 11734347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of higher polythionates in the reduction of chromium(VI) by Acidithiobacillus and Thiobacillus cultures.
    Allegretti P; Furlong J; Donati E
    J Biotechnol; 2006 Mar; 122(1):55-61. PubMed ID: 16223540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial leaching of waste uranium materials.
    Barbic FF; Bracilović DM; Krajincanić BV; Lucić JL
    Z Allg Mikrobiol; 1976; 16(3):179-86. PubMed ID: 788361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans.
    Kumar RN; Nagendran R
    Chemosphere; 2007 Jan; 66(9):1775-81. PubMed ID: 16979697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental studies on waste paper pulp biodegradation.
    Sharma R; Sharma D; Rao KS; Jain RC
    Indian J Environ Health; 2002 Jul; 44(3):181-8. PubMed ID: 14503441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of an acidic and readily-biodegradable non-hazardous industrial process waste on refuse decomposition.
    Sadri A; Staley BF; Barlaz MA; Xu F; Hater GR
    Waste Manag; 2010 Mar; 30(3):389-95. PubMed ID: 19954958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scaled-up bioconversion of fish waste to liquid fertilizer using a 5 L ribbon-type reactor.
    Dao VT; Kim JK
    J Environ Manage; 2011 Oct; 92(10):2441-6. PubMed ID: 21640471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of atmospheric oxygen partial pressure and of the acidity of the medium on the viability of thionic bacteria].
    Andreiuk EI; Rubenchik LI; Kozlova IA; Glushchenko TF
    Mikrobiologiia; 1973; 42(4):643-6. PubMed ID: 4598493
    [No Abstract]   [Full Text] [Related]  

  • 29. [Dissolution of alloy components from Ni/Cr base alloys by bacterial leaching].
    Gehre G; Kroszewsky K; Dittrich H; Glombitza F
    Dtsch Zahnarztl Z; 1990 Aug; 45(8):478-9. PubMed ID: 2269176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cement based solidification/stabilization of arsenic-contaminated mine tailings.
    Choi WH; Lee SR; Park JY
    Waste Manag; 2009 May; 29(5):1766-71. PubMed ID: 19118995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment.
    Travisany D; Cortés MP; Latorre M; Di Genova A; Budinich M; Bobadilla-Fazzini RA; Parada P; González M; Maass A
    Res Microbiol; 2014 Nov; 165(9):743-52. PubMed ID: 25148779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Halomonas desiderata as a bacterial model to predict the possible biological nitrate reduction in concrete cells of nuclear waste disposals.
    Alquier M; Kassim C; Bertron A; Sablayrolles C; Rafrafi Y; Albrecht A; Erable B
    J Environ Manage; 2014 Jan; 132():32-41. PubMed ID: 24275342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison and evaluation of immobilization methods for preparing bacterial probes using acidophilic bioleaching bacteria Acidithiobacillus thiooxidans for AFM studies.
    Diao M; Taran E; Mahler SM; Nguyen AV
    J Microbiol Methods; 2014 Jul; 102():12-4. PubMed ID: 24768743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth inhibition by tungsten in the sulfur-oxidizing bacterium Acidithiobacillus thiooxidans.
    Negishi A; Muraoka T; Maeda T; Takeuchi F; Kanao T; Kamimura K; Sugio T
    Biosci Biotechnol Biochem; 2005 Nov; 69(11):2073-80. PubMed ID: 16306687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial leaching of a sulfide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans: I. Shake flask studies.
    Lizama HM; Suzuki I
    Biotechnol Bioeng; 1988 Jun; 32(1):110-6. PubMed ID: 18584725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of metabolites from the indigenous Acidithiobacillus thiooxidans and temperature on the bioleaching of cadmium from soil.
    Liu HL; Chiu CW; Cheng YC
    Biotechnol Bioeng; 2003 Sep; 83(6):638-45. PubMed ID: 12889028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1: Processing and characterization of MSWI fly ash.
    Aubert JE; Husson B; Sarramone N
    J Hazard Mater; 2006 Aug; 136(3):624-31. PubMed ID: 16442718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple medium modification for isolation, growth and enumeration of Acidithiobacillus thiooxidans (syn. Thiobacillus thiooxidans) from water samples.
    Starosvetsky J; Zukerman U; Armon RH
    J Microbiol Methods; 2013 Feb; 92(2):178-82. PubMed ID: 23178791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the long-term leaching behavior of (137)Cs, (60)Co, and (152,154)Eu radionuclides from cement-clay matrices.
    Abdel Rahman RO; Zaki AA; El-Kamash AM
    J Hazard Mater; 2007 Jul; 145(3):372-80. PubMed ID: 17178435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation and detoxification of nicotine in tobacco solid waste by a Pseudomonas sp.
    Wang SN; Xu P; Tang HZ; Meng J; Liu XL; Huang J; Chen H; Du Y; Blankespoor HD
    Biotechnol Lett; 2004 Oct; 26(19):1493-6. PubMed ID: 15604785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.