BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11720982)

  • 21. Orientational distribution of spin-labeled actin oriented by flow.
    Ostap EM; Yanagida T; Thomas DD
    Biophys J; 1992 Oct; 63(4):966-75. PubMed ID: 1330042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Saturation transfer electron spin resonance of Ca2(+)-ATPase covalently spin-labeled with beta-substituted vinyl ketone- and maleimide-nitroxide derivatives. Effects of segmental motion and labeling levels.
    Horváth LI; Dux L; Hankovszky HO; Hideg K; Marsh D
    Biophys J; 1990 Jul; 58(1):231-41. PubMed ID: 2166598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Saturation-recovery electron paramagnetic resonance discrimination by oxygen transport (DOT) method for characterizing membrane domains.
    Subczynski WK; Widomska J; Wisniewska A; Kusumi A
    Methods Mol Biol; 2007; 398():143-57. PubMed ID: 18214379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rotational correlation times of 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy spin label with respect to heme and nonheme proteins.
    Cavalu S; Damian G
    Biomacromolecules; 2003; 4(6):1630-5. PubMed ID: 14606889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orientation of spin-labeled light chain-2 exchanged onto myosin cross-bridges in glycerinated muscle fibers.
    Hambly B; Franks K; Cooke R
    Biophys J; 1991 Jan; 59(1):127-38. PubMed ID: 1849755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulating electron spin resonance spectra of macromolecules labeled with two dipolar-coupled nitroxide spin labels from trajectories.
    Sezer D; Sigurdsson ST
    Phys Chem Chem Phys; 2011 Jul; 13(28):12785-97. PubMed ID: 21691643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A general approach for prediction of motional EPR spectra from Molecular Dynamics (MD) simulations: application to spin labelled protein.
    Oganesyan VS
    Phys Chem Chem Phys; 2011 Mar; 13(10):4724-37. PubMed ID: 21279205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Librational motion of spin-labeled lipids in high-cholesterol containing membranes from echo-detected EPR spectra.
    Erilov DA; Bartucci R; Guzzi R; Marsh D; Dzuba SA; Sportelli L
    Biophys J; 2004 Dec; 87(6):3873-81. PubMed ID: 15377533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel approach to the simulation of nitroxide spin label EPR spectra from a single truncated dynamical trajectory.
    Oganesyan VS
    J Magn Reson; 2007 Oct; 188(2):196-205. PubMed ID: 17689278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Very high frequency electron paramagnetic resonance of 2,2,6,6-tetramethyl-1-piperidinyloxy in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine liposomes: partitioning and molecular dynamics.
    Smirnov AI; Smirnova TI; Morse PD
    Biophys J; 1995 Jun; 68(6):2350-60. PubMed ID: 7647239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetization hysteresis electron paramagnetic resonance. A new null phase insensitive saturation transfer EPR technique with high sensitivity to slow motion.
    Vistnes AI
    Biophys J; 1983 Jul; 43(1):31-7. PubMed ID: 6309263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low microwave-amplitude ESR spectroscopy: measuring spin-relaxation interactions of moderately immobilized spin labels in proteins.
    Hedin EM; Hult K; Mouritsen OG; Høyrup P
    J Biochem Biophys Methods; 2004 Aug; 60(2):117-38. PubMed ID: 15262447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relaxation time determinations by progressive saturation EPR: effects of molecular motion and Zeeman modulation for spin labels.
    Livshits VA; Páli T; Marsh D
    J Magn Reson; 1998 Jul; 133(1):79-91. PubMed ID: 9654471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal EPR detection of weak nitroxide spin adduct and ascorbyl free radical signals.
    Buettner GR; Kiminyo KP
    J Biochem Biophys Methods; 1992 Mar; 24(1-2):147-51. PubMed ID: 1313843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methodology for increased precision in saturation transfer electron paramagnetic resonance studies of rotational dynamics.
    Squier TC; Thomas DD
    Biophys J; 1986 Apr; 49(4):921-35. PubMed ID: 3013330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein rotational dynamics investigated with a dual EPR/optical molecular probe. Spin-labeled eosin.
    Cobb CE; Hustedt EJ; Beechem JM; Beth AH
    Biophys J; 1993 Mar; 64(3):605-13. PubMed ID: 7682451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple method for determination of rotational correlation times and separation of rotational and polarity effects from EPR spectra of spin-labeled biomolecules in a wide correlation time range.
    Steinhoff HJ
    J Biochem Biophys Methods; 1988 Dec; 17(4):237-47. PubMed ID: 2854146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CW-EPR Spectral Simulations: Slow-Motion Regime.
    Budil DE
    Methods Enzymol; 2015; 563():143-70. PubMed ID: 26478485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. W-band PELDOR with 1 kW microwave power: molecular geometry, flexibility and exchange coupling.
    Reginsson GW; Hunter RI; Cruickshank PA; Bolton DR; Sigurdsson ST; Smith GM; Schiemann O
    J Magn Reson; 2012 Mar; 216():175-82. PubMed ID: 22386646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Models for slow anisotropic rotational diffusion in saturation transfer electron paramagnetic resonance at 9 and 35 GHz.
    Johnson ME; Lee L; Fung LW
    Biochemistry; 1982 Aug; 21(18):4459-67. PubMed ID: 6289883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.