BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11720984)

  • 21. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration.
    Discher DE; Boal DH; Boey SK
    Biophys J; 1998 Sep; 75(3):1584-97. PubMed ID: 9726959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elastic thickness compressibilty of the red cell membrane.
    Heinrich V; Ritchie K; Mohandas N; Evans E
    Biophys J; 2001 Sep; 81(3):1452-63. PubMed ID: 11509359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-dependent elastic extensional RBC deformation by micropipette aspiration: redistribution of the spectrin network?
    Lerche D; Kozlov MM; Meier W
    Eur Biophys J; 1991; 19(6):301-9. PubMed ID: 1915155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel role for the Lu/BCAM-spectrin interaction in actin cytoskeleton reorganization.
    Collec E; Lecomte MC; El Nemer W; Colin Y; Le Van Kim C
    Biochem J; 2011 Jun; 436(3):699-708. PubMed ID: 21434869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectrins in axonal cytoskeletons: dynamics revealed by extensions and fluctuations.
    Lai L; Cao J
    J Chem Phys; 2014 Jul; 141(1):015101. PubMed ID: 25005307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extending a spectrin repeat unit. I: linear force-extension response.
    Paramore S; Ayton GS; Mirijanian DT; Voth GA
    Biophys J; 2006 Jan; 90(1):92-100. PubMed ID: 16227506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The axonal actin-spectrin lattice acts as a tension buffering shock absorber.
    Dubey S; Bhembre N; Bodas S; Veer S; Ghose A; Callan-Jones A; Pullarkat P
    Elife; 2020 Apr; 9():. PubMed ID: 32267230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte.
    Li J; Dao M; Lim CT; Suresh S
    Biophys J; 2005 May; 88(5):3707-19. PubMed ID: 15749778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinematics of red cell aspiration by fluorescence-imaged microdeformation.
    Discher DE; Mohandas N
    Biophys J; 1996 Oct; 71(4):1680-94. PubMed ID: 8889146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: a study with bio-orthogonal chemical probes.
    Ciana A; Achilli C; Hannoush RN; Risso A; Balduini C; Minetti G
    Biochim Biophys Acta; 2013 Mar; 1828(3):924-31. PubMed ID: 23219804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study.
    Sleep J; Wilson D; Simmons R; Gratzer W
    Biophys J; 1999 Dec; 77(6):3085-95. PubMed ID: 10585930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles.
    Rief M; Pascual J; Saraste M; Gaub HE
    J Mol Biol; 1999 Feb; 286(2):553-61. PubMed ID: 9973570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stress-free state of the red blood cell membrane and the deformation of its skeleton.
    Svelc T; Svetina S
    Cell Mol Biol Lett; 2012 Jun; 17(2):217-27. PubMed ID: 22302416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectrin folding versus unfolding reactions and RBC membrane stiffness.
    Zhu Q; Asaro RJ
    Biophys J; 2008 Apr; 94(7):2529-45. PubMed ID: 18065469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature transitions of protein properties in human red blood cells.
    Artmann GM; Kelemen C; Porst D; Büldt G; Chien S
    Biophys J; 1998 Dec; 75(6):3179-83. PubMed ID: 9826638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane dynamics of the water transport protein aquaporin-1 in intact human red cells.
    Cho MR; Knowles DW; Smith BL; Moulds JJ; Agre P; Mohandas N; Golan DE
    Biophys J; 1999 Feb; 76(2):1136-44. PubMed ID: 9916045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of band-3 protein diffusion in the normal and defective red blood cell membrane.
    Li H; Zhang Y; Ha V; Lykotrafitis G
    Soft Matter; 2016 Apr; 12(15):3643-53. PubMed ID: 26977476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Molecular interactions of membrane proteins and erythrocyte deformability].
    Boivin P
    Pathol Biol (Paris); 1984 Jun; 32(6):717-35. PubMed ID: 6235477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alpha-adducin dissociates from F-actin and spectrin during platelet activation.
    Barkalow KL; Italiano JE; Chou DE; Matsuoka Y; Bennett V; Hartwig JH
    J Cell Biol; 2003 May; 161(3):557-70. PubMed ID: 12743105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The lens membrane skeleton contains structures preferentially enriched in spectrin-actin or tropomodulin-actin complexes.
    Woo MK; Lee A; Fischer RS; Moyer J; Fowler VM
    Cell Motil Cytoskeleton; 2000 Aug; 46(4):257-68. PubMed ID: 10962480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.