These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 11721006)

  • 41. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form.
    Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H
    Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation of the proton release channel of bacteriorhodopsin in different intermediates of the photo cycle. A molecular dynamics study.
    Nagel J; Edholm O; Berger O; Jähnig F
    Biochemistry; 1997 Mar; 36(10):2875-83. PubMed ID: 9062117
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photocycle of dried acid purple form of bacteriorhodopsin.
    Groma GI; Kelemen L; Kulcsár A; Lakatos M; Váró G
    Biophys J; 2001 Dec; 81(6):3432-41. PubMed ID: 11721005
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin.
    Sass HJ; Büldt G; Gessenich R; Hehn D; Neff D; Schlesinger R; Berendzen J; Ormos P
    Nature; 2000 Aug; 406(6796):649-53. PubMed ID: 10949308
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of the size and protonation state of acidic residue 85 on the absorption spectrum and photoreaction of the bacteriorhodopsin chromophore.
    Lanyi JK; Tittor J; Váró G; Krippahl G; Oesterhelt D
    Biochim Biophys Acta; 1992 Jan; 1099(1):102-10. PubMed ID: 1346749
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light-induced isomerization causes an increase in the chromophore tilt in the M intermediate of bacteriorhodopsin: a neutron diffraction study.
    Hauss T; Büldt G; Heyn MP; Dencher NA
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):11854-8. PubMed ID: 7991546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trans/13-cis isomerization is essential for both the photocycle and proton pumping of bacteriorhodopsin.
    Chang CH; Govindjee R; Ebrey T; Bagley KA; Dollinger G; Eisenstein L; Marque J; Roder H; Vittitow J; Fang JM
    Biophys J; 1985 Apr; 47(4):509-12. PubMed ID: 2985136
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural changes in bacteriorhodopsin caused by two-photon-induced photobleaching.
    Rhinow D; Imhof M; Chizhik I; Baumann RP; Hampp N
    J Phys Chem B; 2012 Jun; 116(25):7455-62. PubMed ID: 22512248
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of conformational changes in bacteriorhodopsin upon retinal removal.
    Cladera J; Torres J; Padrós E
    Biophys J; 1996 Jun; 70(6):2882-7. PubMed ID: 8744326
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Trp86 --> Phe replacement in bacteriorhodopsin affects a water molecule near Asp85 and light adaptation.
    Hatanaka M; Kashima R; Kandori H; Friedman N; Sheves M; Needleman R; Lanyi JK; Maeda A
    Biochemistry; 1997 May; 36(18):5493-8. PubMed ID: 9154932
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electron crystallography of bacteriorhodopsin with millisecond time resolution.
    Subramaniam S; Henderson R
    J Struct Biol; 1999 Dec; 128(1):19-25. PubMed ID: 10600554
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fourier transform infrared double-flash experiments resolve bacteriorhodopsin's M1 to M2 transition.
    Hessling B; Herbst J; Rammelsberg R; Gerwert K
    Biophys J; 1997 Oct; 73(4):2071-80. PubMed ID: 9336202
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Time-resolved step-scan Fourier transform infrared spectroscopy reveals differences between early and late M intermediates of bacteriorhodopsin.
    Rödig C; Chizhov I; Weidlich O; Siebert F
    Biophys J; 1999 May; 76(5):2687-701. PubMed ID: 10233083
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes.
    Tittor J; Paula S; Subramaniam S; Heberle J; Henderson R; Oesterhelt D
    J Mol Biol; 2002 May; 319(2):555-65. PubMed ID: 12051928
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant.
    Hatcher ME; Hu JG; Belenky M; Verdegem P; Lugtenburg J; Griffin RG; Herzfeld J
    Biophys J; 2002 Feb; 82(2):1017-29. PubMed ID: 11806941
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural change of threonine 89 upon photoisomerization in bacteriorhodopsin as revealed by polarized FTIR spectroscopy.
    Kandori H; Kinoshita N; Yamazaki Y; Maeda A; Shichida Y; Needleman R; Lanyi JK; Bizounok M; Herzfeld J; Raap J; Lugtenburg J
    Biochemistry; 1999 Jul; 38(30):9676-83. PubMed ID: 10423246
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of water in the extracellular half channel of bacteriorhodopsin.
    Ganea C; Gergely C; Ludmann K; Váró G
    Biophys J; 1997 Nov; 73(5):2718-25. PubMed ID: 9370465
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-resolved detection of transient movement of helices F and G in doubly spin-labeled bacteriorhodopsin.
    Radzwill N; Gerwert K; Steinhoff HJ
    Biophys J; 2001 Jun; 80(6):2856-66. PubMed ID: 11371459
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Time-resolved x-ray diffraction reveals multiple conformations in the M-N transition of the bacteriorhodopsin photocycle.
    Oka T; Yagi N; Fujisawa T; Kamikubo H; Tokunaga F; Kataoka M
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14278-82. PubMed ID: 11106390
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin.
    Govindjee R; Misra S; Balashov SP; Ebrey TG; Crouch RK; Menick DR
    Biophys J; 1996 Aug; 71(2):1011-23. PubMed ID: 8842238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.