These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 11721298)
1. The effect of transcranial magnetic stimulation on reciprocal inhibition in the human leg. Masakado Y; Muraoka Y; Tomita Y; Chino N Electromyogr Clin Neurophysiol; 2001; 41(7):429-32. PubMed ID: 11721298 [TBL] [Abstract][Full Text] [Related]
2. Reciprocal inhibition and corticospinal transmission in the arm and leg in patients with autosomal dominant pure spastic paraparesis (ADPSP). Crone C; Petersen NT; Nielsen JE; Hansen NL; Nielsen JB Brain; 2004 Dec; 127(Pt 12):2693-702. PubMed ID: 15509621 [TBL] [Abstract][Full Text] [Related]
3. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking. Iglesias C; Nielsen JB; Marchand-Pauvert V Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562 [TBL] [Abstract][Full Text] [Related]
4. H-reflex and reciprocal Ia inhibition after fatiguing isometric voluntary contraction in soleus muscle. Tanino Y; Daikuya S; Nishimori T; Takasaki K; Kanei K; Suzuki T Electromyogr Clin Neurophysiol; 2004 Dec; 44(8):473-6. PubMed ID: 15646004 [TBL] [Abstract][Full Text] [Related]
5. Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans. Perez MA; Lungholt BK; Nielsen JB J Physiol; 2005 Oct; 568(Pt 1):343-54. PubMed ID: 16051628 [TBL] [Abstract][Full Text] [Related]
6. Transcranial direct current stimulation modulates the spinal plasticity induced with patterned electrical stimulation. Fujiwara T; Tsuji T; Honaga K; Hase K; Ushiba J; Liu M Clin Neurophysiol; 2011 Sep; 122(9):1834-7. PubMed ID: 21377414 [TBL] [Abstract][Full Text] [Related]
7. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons. Kubota S; Hirano M; Morishita T; Uehara K; Funase K Neuroreport; 2015 Mar; 26(5):249-53. PubMed ID: 25719751 [TBL] [Abstract][Full Text] [Related]
8. Mechanical and focal electrical stimuli applied to the skin of the index fingertip induce both inhibition and excitation in low-threshold flexor carpi radialis motor units. Lourenço G; Caronni A; Cavallari P Eur J Neurosci; 2007 Oct; 26(8):2204-10. PubMed ID: 17908173 [TBL] [Abstract][Full Text] [Related]
9. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles. Perez MA; Lundbye-Jensen J; Nielsen JB J Neurophysiol; 2007 Dec; 98(6):3677-87. PubMed ID: 17942616 [TBL] [Abstract][Full Text] [Related]
10. Inter-individual variation in reciprocal Ia inhibition is dependent on the descending volleys delivered from corticospinal neurons to Ia interneurons. Kubota S; Uehara K; Morishita T; Hirano M; Funase K J Electromyogr Kinesiol; 2014 Feb; 24(1):46-51. PubMed ID: 24321700 [TBL] [Abstract][Full Text] [Related]
11. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking. Ung RV; Imbeault MA; Ethier C; Brizzi L; Capaday C J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598 [TBL] [Abstract][Full Text] [Related]
12. Operant conditioning of reciprocal inhibition in rat soleus muscle. Chen XY; Chen L; Chen Y; Wolpaw JR J Neurophysiol; 2006 Oct; 96(4):2144-50. PubMed ID: 16807351 [TBL] [Abstract][Full Text] [Related]
13. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans. Yavuz UŞ; Negro F; Diedrichs R; Farina D J Neurophysiol; 2018 May; 119(5):1699-1706. PubMed ID: 29384455 [TBL] [Abstract][Full Text] [Related]
14. Post-tetanic potentiation of reciprocal Ia inhibition in human lower limb. Sato T; Tsuboi T; Miyazaki M; Sakamoto K J Electromyogr Kinesiol; 1999 Feb; 9(1):59-66. PubMed ID: 10022562 [TBL] [Abstract][Full Text] [Related]
15. Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans. Mummidisetty CK; Smith AC; Knikou M Clin Neurophysiol; 2013 Mar; 124(3):557-64. PubMed ID: 23046639 [TBL] [Abstract][Full Text] [Related]
16. Inhibition from the plantar nerve to soleus muscle during the stance phase of walking. Shoji J; Kobayashi K; Ushiba J; Kagamihara Y; Masakado Y Brain Res; 2005 Jun; 1048(1-2):48-58. PubMed ID: 15921665 [TBL] [Abstract][Full Text] [Related]
17. Convergence of ipsi- and contralateral muscle afferents on common interneurons mediating reciprocal inhibition of ankle plantarflexors in humans. Mrachacz-Kersting N; Geertsen SS; Stevenson AJ; Nielsen JB Exp Brain Res; 2017 May; 235(5):1555-1564. PubMed ID: 28258435 [TBL] [Abstract][Full Text] [Related]
18. On the methods employed to record and measure the human soleus H-reflex. Knikou M; Taglianetti C Somatosens Mot Res; 2006; 23(1-2):55-62. PubMed ID: 16846960 [TBL] [Abstract][Full Text] [Related]
19. Sensory afferent inhibition within and between limbs in humans. Bikmullina R; Bäumer T; Zittel S; Münchau A Clin Neurophysiol; 2009 Mar; 120(3):610-8. PubMed ID: 19136299 [TBL] [Abstract][Full Text] [Related]
20. Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning. Frigon A; Collins DF; Zehr EP J Neurophysiol; 2004 Apr; 91(4):1516-23. PubMed ID: 14657191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]