These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11721522)

  • 1. Quantitative structure-transformation relationships of phenylurea herbicides.
    Berger BM; Müller M; Eing A
    Pest Manag Sci; 2001 Nov; 57(11):1043-54. PubMed ID: 11721522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-transformation relationships of sulfonylurea herbicides.
    Berger BM; Müller M; Eing A
    Pest Manag Sci; 2002 Jul; 58(7):724-35. PubMed ID: 12146175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing transformation rates and formation of products of phenylurea herbicides in soil.
    Berger BM
    J Agric Food Chem; 1999 Aug; 47(8):3389-96. PubMed ID: 10552662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols.
    Liu G; Yu J
    Water Res; 2005 May; 39(10):2048-55. PubMed ID: 15913706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The determination of toxicities of sulphonylurea and phenylurea herbicides with quantitative structure-toxicity relationship (QSTR) studies.
    Can A; Yildiz I; Guvendik G
    Environ Toxicol Pharmacol; 2013 May; 35(3):369-79. PubMed ID: 23467114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic effect of dissolved humic acids on the chemical degradation of phenylurea herbicides.
    Salvestrini S; Capasso S; Iovino P
    Pest Manag Sci; 2008 Jul; 64(7):768-74. PubMed ID: 18318456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils.
    Boivin A; Cherrier R; Schiavon M
    Chemosphere; 2005 Nov; 61(5):668-76. PubMed ID: 16219503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pesticide adsorption in the vadose zone: a case study on Eocene and Quaternary materials in Northern France.
    Coquet Y; Ribière C; Vachier P
    Pest Manag Sci; 2004 Oct; 60(10):992-1000. PubMed ID: 15481825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSPR modeling of soil sorption coefficients (K(OC)) of pesticides using SPA-ANN and SPA-MLR.
    Goudarzi N; Goodarzi M; Araujo MC; Galvão RK
    J Agric Food Chem; 2009 Aug; 57(15):7153-8. PubMed ID: 19722589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a general quantum-chemical descriptor for steric effects: density functional theory based QSAR study of herbicidal sulfonylurea analogues.
    Xi Z; Yu Z; Niu C; Ban S; Yang G
    J Comput Chem; 2006 Oct; 27(13):1571-6. PubMed ID: 16868987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pH-dependent sorption and transformation on simulated pesticide leaching.
    van der Linden AM; Tiktak A; Boesten JJ; Leijnse A
    Sci Total Environ; 2009 May; 407(10):3415-20. PubMed ID: 19269681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters.
    El Sebai T; Lagacherie B; Soulas G; Martin-Laurent F
    Environ Pollut; 2007 Feb; 145(3):680-90. PubMed ID: 16979806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An application of the QM-QSAR method to predict and rationalize lipophilicity of simple monomers.
    Holder AJ; Ye L; Yourtee DM; Agarwal A; Eick JD; Chappelow CC
    Dent Mater; 2005 Jul; 21(7):591-8. PubMed ID: 15978267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic amendments from olive cake as a strategy to modify the degradation of sulfonylurea herbicides in soil.
    Delgado-Moreno L; Peña A
    J Agric Food Chem; 2007 Jul; 55(15):6213-8. PubMed ID: 17608500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Adsorption of phenylurea derivative and chlorine-substituted aniline herbicides by microorganisms].
    Funtikova NS; Surovtseva EG
    Mikrobiologiia; 1979; 48(6):1086-92. PubMed ID: 119144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns.
    Dousset S; Thevenot M; Pot V; Simunek J; Andreux F
    J Contam Hydrol; 2007 Dec; 94(3-4):261-76. PubMed ID: 17698243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and degradation of four acidic herbicides in soils from southern Spain.
    Villaverde J; Kah M; Brown CD
    Pest Manag Sci; 2008 Jul; 64(7):703-10. PubMed ID: 18283714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstrating formation of potentially persistent transformation products from the herbicides bromoxynil and ioxynil using liquid chromatography-tandem mass spectrometry (LC-MS/MS).
    Nielsen MK; Holtze MS; Svensmark B; Juhler RK
    Pest Manag Sci; 2007 Feb; 63(2):141-9. PubMed ID: 17125153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid screening tool for estimating the potential of 2-hydroxypropyl-beta-cyclodextrin complexation for solubilization purposes.
    Trapani A; Lopedota A; Denora N; Laquintana V; Franco M; Latrofa A; Trapani G; Liso G
    Int J Pharm; 2005 May; 295(1-2):163-75. PubMed ID: 15848001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of solid-liquid partition coefficients (Kd) for the herbicides isoproturon and trifluralin in five UK agricultural soils.
    Cooke CM; Shaw G; Collins CD
    Environ Pollut; 2004 Dec; 132(3):541-52. PubMed ID: 15325470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.