These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 11721905)
21. Modulation of electroosmotic flows in electron-conducting microchannels by coupled quasi-reversible faradaic and adsorption-mediated depolarization. Qian S; Duval JF J Colloid Interface Sci; 2006 Aug; 300(1):413-28. PubMed ID: 16725151 [TBL] [Abstract][Full Text] [Related]
22. Mass transfer and flow in electrically charged micro- and nanochannels. Conlisk AT; McFerran J; Zheng Z; Hansford D Anal Chem; 2002 May; 74(9):2139-50. PubMed ID: 12033318 [TBL] [Abstract][Full Text] [Related]
23. An improved analytical solution on viscous dissipation effect in extended Stokes' second problem in microchannel with isothermal boundaries. Hor CH; Tso CP; Chen GM Heliyon; 2024 Sep; 10(18):e37668. PubMed ID: 39323863 [TBL] [Abstract][Full Text] [Related]
24. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Chao K; Chen B; Wu J Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948 [TBL] [Abstract][Full Text] [Related]
25. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips. Jin Y; Luo GA Electrophoresis; 2003 Apr; 24(7-8):1242-52. PubMed ID: 12707918 [TBL] [Abstract][Full Text] [Related]
26. Structure and particle transport in second-order stokes flow. Keanini RG Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6606-20. PubMed ID: 11088341 [TBL] [Abstract][Full Text] [Related]
27. High-ionic-strength electroosmotic flows in uncharged hydrophobic nanochannels. Kim D; Darve E J Colloid Interface Sci; 2009 Feb; 330(1):194-200. PubMed ID: 19007939 [TBL] [Abstract][Full Text] [Related]
28. High-frequency nanofluidics: a universal formulation of the fluid dynamics of MEMS and NEMS. Ekinci KL; Yakhot V; Rajauria S; Colosqui C; Karabacak DM Lab Chip; 2010 Nov; 10(22):3013-25. PubMed ID: 20862440 [TBL] [Abstract][Full Text] [Related]
29. Transient electroosmotic flow induced by AC electric field in micro-channel with patchwise surface heterogeneities. Luo WJ J Colloid Interface Sci; 2006 Mar; 295(2):551-61. PubMed ID: 16242138 [TBL] [Abstract][Full Text] [Related]
30. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field. Krishnaveni T; Renganathan T; Picardo JR; Pushpavanam S Phys Rev E; 2017 Sep; 96(3-1):033117. PubMed ID: 29347018 [TBL] [Abstract][Full Text] [Related]
31. Surface charge-dependent hydrodynamic properties of an electroosmotic slip flow. Rezaei M; Azimian AR; Pishevar AR Phys Chem Chem Phys; 2018 Dec; 20(48):30365-30375. PubMed ID: 30489580 [TBL] [Abstract][Full Text] [Related]
32. Analysis of electroosmotic flow of power-law fluids in a slit microchannel. Zhao C; Zholkovskij E; Masliyah JH; Yang C J Colloid Interface Sci; 2008 Oct; 326(2):503-10. PubMed ID: 18656891 [TBL] [Abstract][Full Text] [Related]
33. Effect of liquid slip in electrokinetic parallel-plate microchannel flow. Yang J; Kwok DY J Colloid Interface Sci; 2003 Apr; 260(1):225-33. PubMed ID: 12742054 [TBL] [Abstract][Full Text] [Related]
34. Analytical study of AC electroosmotic mixing in 2-dimensional microchannel with time periodic surface potential. Kim SJ; Yoon BJ Biomicrofluidics; 2019 Mar; 13(2):024102. PubMed ID: 30867886 [TBL] [Abstract][Full Text] [Related]
35. Numerical Analysis of the Heterogeneity Effect on Electroosmotic Micromixers Based on the Standard Deviation of Concentration and Mixing Entropy Index. Farahinia A; Jamaati J; Niazmand H; Zhang W Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577699 [TBL] [Abstract][Full Text] [Related]
36. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow. Song H; Wang Y; Pant K Microfluid Nanofluidics; 2013 Jan; 14(1-2):371-382. PubMed ID: 23554584 [TBL] [Abstract][Full Text] [Related]
37. Radial basis function interpolation supplemented lattice Boltzmann method for electroosmotic flows in microchannel. Guo P; Qian F; Zhang W; Yan H; Wang Q; Zhao C Electrophoresis; 2021 Nov; 42(21-22):2171-2181. PubMed ID: 34549443 [TBL] [Abstract][Full Text] [Related]
38. Parametrical studies of electroosmotic transport characteristics in submicrometer channels. Postler T; Slouka Z; Svoboda M; Pribyl M; Snita D J Colloid Interface Sci; 2008 Apr; 320(1):321-32. PubMed ID: 18201714 [TBL] [Abstract][Full Text] [Related]
39. Modeling electroosmotic and pressure-driven flows in porous microfluidic devices: zeta potential and porosity changes near the channel walls. Scales N; Tait RN J Chem Phys; 2006 Sep; 125(9):094714. PubMed ID: 16965112 [TBL] [Abstract][Full Text] [Related]
40. Electroosmotic flow in capillary channels filled with nonconstant viscosity electrolytes: exact solution of the Navier-Stokes equation. Otevrel M; Klepárník K Electrophoresis; 2002 Oct; 23(20):3574-82. PubMed ID: 12412127 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]