These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 11722129)
1. Studies on water transport through the sweet cherry fruit surface: II. Conductance of the cuticle in relation to fruit development. Knoche M; Peschel S; Hinz M; Bukovac MJ Planta; 2001 Oct; 213(6):927-36. PubMed ID: 11722129 [TBL] [Abstract][Full Text] [Related]
2. Studies on water transport through the sweet cherry fruit surface: IX. Comparing permeability in water uptake and transpiration. Beyer M; Lau S; Knoche M Planta; 2005 Jan; 220(3):474-85. PubMed ID: 15338307 [TBL] [Abstract][Full Text] [Related]
3. Studies on water transport through the sweet cherry fruit surface: characterizing conductance of the cuticular membrane using pericarp segments. Knoche M; Peschel S; Hinz M; Bukovac MJ Planta; 2000 Dec; 212(1):127-35. PubMed ID: 11219577 [TBL] [Abstract][Full Text] [Related]
4. Studies on water transport through the sweet cherry fruit surface: III. Conductance of the cuticle in relation to fruit size. Knoche M; Peschel S; Hinz M Physiol Plant; 2002 Mar; 114(3):414-421. PubMed ID: 12060264 [TBL] [Abstract][Full Text] [Related]
5. Studies on water transport through the sweet cherry fruit surface. 11. FeCl3 decreases water permeability of polar pathways. Weichert H; Knoche M J Agric Food Chem; 2006 Aug; 54(17):6294-302. PubMed ID: 16910722 [TBL] [Abstract][Full Text] [Related]
6. Changes in strain and deposition of cuticle in developing sweet cherry fruit. Knoche M; Beyer M; Peschel S; Oparlakov B; Bukovac MJ Physiol Plant; 2004 Apr; 120(4):667-677. PubMed ID: 15032829 [TBL] [Abstract][Full Text] [Related]
7. Studies on water transport through the sweet cherry fruit surface. 7. Fe3+ and Al3+ reduce conductance for water uptake. Beyer M; Peschel S; Weichert H; Knoche M J Agric Food Chem; 2002 Dec; 50(26):7600-8. PubMed ID: 12475277 [TBL] [Abstract][Full Text] [Related]
8. Studies on water transport through the sweet cherry fruit surface. 10. Evidence for polar pathways across the exocarp. Weichert H; Knoche M J Agric Food Chem; 2006 May; 54(11):3951-8. PubMed ID: 16719520 [TBL] [Abstract][Full Text] [Related]
9. Composition of the cuticle of developing sweet cherry fruit. Peschel S; Franke R; Schreiber L; Knoche M Phytochemistry; 2007 Apr; 68(7):1017-25. PubMed ID: 17328933 [TBL] [Abstract][Full Text] [Related]
10. Mismatch between cuticle deposition and area expansion in fruit skins allows potentially catastrophic buildup of elastic strain. Lai X; Khanal BP; Knoche M Planta; 2016 Nov; 244(5):1145-1156. PubMed ID: 27469168 [TBL] [Abstract][Full Text] [Related]
11. Identification of putative candidate genes involved in cuticle formation in Prunus avium (sweet cherry) fruit. Alkio M; Jonas U; Sprink T; van Nocker S; Knoche M Ann Bot; 2012 Jul; 110(1):101-12. PubMed ID: 22610921 [TBL] [Abstract][Full Text] [Related]
12. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Zeisler V; Schreiber L Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic and Gas Chromatography-Mass Spectrometry Metabolomic Profiling Analysis of the Epidermis Provides Insights into Cuticular Wax Regulation in Developing 'Yuluxiang' Pear Fruit. Wu X; Shi X; Bai M; Chen Y; Li X; Qi K; Cao P; Li M; Yin H; Zhang S J Agric Food Chem; 2019 Jul; 67(30):8319-8331. PubMed ID: 31287308 [TBL] [Abstract][Full Text] [Related]
14. L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Imai T; Ban Y; Terakami S; Yamamoto T; Moriguchi T Physiol Plant; 2009 Jun; 136(2):139-49. PubMed ID: 19453508 [TBL] [Abstract][Full Text] [Related]
15. Compositional, structural and functional cuticle analysis of Prunus laurocerasus L. sheds light on cuticular barrier plasticity. Diarte C; Xavier de Souza A; Staiger S; Deininger AC; Bueno A; Burghardt M; Graell J; Riederer M; Lara I; Leide J Plant Physiol Biochem; 2021 Jan; 158():434-445. PubMed ID: 33257229 [TBL] [Abstract][Full Text] [Related]
16. Water Influx through the Wetted Surface of a Sweet Cherry Fruit: Evidence for an Associated Solute Efflux. Winkler A; Riedel D; Neuwald DA; Knoche M Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32252289 [TBL] [Abstract][Full Text] [Related]
17. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L. Huang H; Burghardt M; Schuster AC; Leide J; Lara I; Riederer M J Agric Food Chem; 2017 Oct; 65(40):8790-8797. PubMed ID: 28880084 [TBL] [Abstract][Full Text] [Related]
18. Response of winter root starch concentration to severe water stress and fruit load and its subsequent effects on early peach fruit development. Lopez G; Girona J; Marsal J Tree Physiol; 2007 Nov; 27(11):1619-26. PubMed ID: 17669751 [TBL] [Abstract][Full Text] [Related]
19. Modelling the effect of fruit growth on surface conductance to water vapour diffusion. Gibert C; Lescourret F; Génard M; Vercambre G; Pérez Pastor A Ann Bot; 2005 Mar; 95(4):673-83. PubMed ID: 15655107 [TBL] [Abstract][Full Text] [Related]
20. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. Santrůcek J; Simánová E; Karbulková J; Simková M; Schreiber L J Exp Bot; 2004 Jun; 55(401):1411-22. PubMed ID: 15155780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]