BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 11722129)

  • 1. Studies on water transport through the sweet cherry fruit surface: II. Conductance of the cuticle in relation to fruit development.
    Knoche M; Peschel S; Hinz M; Bukovac MJ
    Planta; 2001 Oct; 213(6):927-36. PubMed ID: 11722129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on water transport through the sweet cherry fruit surface: IX. Comparing permeability in water uptake and transpiration.
    Beyer M; Lau S; Knoche M
    Planta; 2005 Jan; 220(3):474-85. PubMed ID: 15338307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on water transport through the sweet cherry fruit surface: characterizing conductance of the cuticular membrane using pericarp segments.
    Knoche M; Peschel S; Hinz M; Bukovac MJ
    Planta; 2000 Dec; 212(1):127-35. PubMed ID: 11219577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on water transport through the sweet cherry fruit surface: III. Conductance of the cuticle in relation to fruit size.
    Knoche M; Peschel S; Hinz M
    Physiol Plant; 2002 Mar; 114(3):414-421. PubMed ID: 12060264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on water transport through the sweet cherry fruit surface. 11. FeCl3 decreases water permeability of polar pathways.
    Weichert H; Knoche M
    J Agric Food Chem; 2006 Aug; 54(17):6294-302. PubMed ID: 16910722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in strain and deposition of cuticle in developing sweet cherry fruit.
    Knoche M; Beyer M; Peschel S; Oparlakov B; Bukovac MJ
    Physiol Plant; 2004 Apr; 120(4):667-677. PubMed ID: 15032829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on water transport through the sweet cherry fruit surface. 7. Fe3+ and Al3+ reduce conductance for water uptake.
    Beyer M; Peschel S; Weichert H; Knoche M
    J Agric Food Chem; 2002 Dec; 50(26):7600-8. PubMed ID: 12475277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on water transport through the sweet cherry fruit surface. 10. Evidence for polar pathways across the exocarp.
    Weichert H; Knoche M
    J Agric Food Chem; 2006 May; 54(11):3951-8. PubMed ID: 16719520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composition of the cuticle of developing sweet cherry fruit.
    Peschel S; Franke R; Schreiber L; Knoche M
    Phytochemistry; 2007 Apr; 68(7):1017-25. PubMed ID: 17328933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mismatch between cuticle deposition and area expansion in fruit skins allows potentially catastrophic buildup of elastic strain.
    Lai X; Khanal BP; Knoche M
    Planta; 2016 Nov; 244(5):1145-1156. PubMed ID: 27469168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of putative candidate genes involved in cuticle formation in Prunus avium (sweet cherry) fruit.
    Alkio M; Jonas U; Sprink T; van Nocker S; Knoche M
    Ann Bot; 2012 Jul; 110(1):101-12. PubMed ID: 22610921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.
    Zeisler V; Schreiber L
    Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic and Gas Chromatography-Mass Spectrometry Metabolomic Profiling Analysis of the Epidermis Provides Insights into Cuticular Wax Regulation in Developing 'Yuluxiang' Pear Fruit.
    Wu X; Shi X; Bai M; Chen Y; Li X; Qi K; Cao P; Li M; Yin H; Zhang S
    J Agric Food Chem; 2019 Jul; 67(30):8319-8331. PubMed ID: 31287308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development.
    Imai T; Ban Y; Terakami S; Yamamoto T; Moriguchi T
    Physiol Plant; 2009 Jun; 136(2):139-49. PubMed ID: 19453508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compositional, structural and functional cuticle analysis of Prunus laurocerasus L. sheds light on cuticular barrier plasticity.
    Diarte C; Xavier de Souza A; Staiger S; Deininger AC; Bueno A; Burghardt M; Graell J; Riederer M; Lara I; Leide J
    Plant Physiol Biochem; 2021 Jan; 158():434-445. PubMed ID: 33257229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water Influx through the Wetted Surface of a Sweet Cherry Fruit: Evidence for an Associated Solute Efflux.
    Winkler A; Riedel D; Neuwald DA; Knoche M
    Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32252289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L.
    Huang H; Burghardt M; Schuster AC; Leide J; Lara I; Riederer M
    J Agric Food Chem; 2017 Oct; 65(40):8790-8797. PubMed ID: 28880084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of winter root starch concentration to severe water stress and fruit load and its subsequent effects on early peach fruit development.
    Lopez G; Girona J; Marsal J
    Tree Physiol; 2007 Nov; 27(11):1619-26. PubMed ID: 17669751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the effect of fruit growth on surface conductance to water vapour diffusion.
    Gibert C; Lescourret F; Génard M; Vercambre G; Pérez Pastor A
    Ann Bot; 2005 Mar; 95(4):673-83. PubMed ID: 15655107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves.
    Santrůcek J; Simánová E; Karbulková J; Simková M; Schreiber L
    J Exp Bot; 2004 Jun; 55(401):1411-22. PubMed ID: 15155780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.