These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 11722133)
1. Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? Pich A; Manteuffel R; Hillmer S; Scholz G; Schmidt W Planta; 2001 Oct; 213(6):967-76. PubMed ID: 11722133 [TBL] [Abstract][Full Text] [Related]
2. Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability. Schikora A; Schmidt W Plant Physiol; 2001 Apr; 125(4):1679-87. PubMed ID: 11299349 [TBL] [Abstract][Full Text] [Related]
3. Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants. García MJ; Romera FJ; Stacey MG; Stacey G; Villar E; Alcántara E; Pérez-Vicente R Planta; 2013 Jan; 237(1):65-75. PubMed ID: 22983673 [TBL] [Abstract][Full Text] [Related]
4. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Klatte M; Schuler M; Wirtz M; Fink-Straube C; Hell R; Bauer P Plant Physiol; 2009 May; 150(1):257-71. PubMed ID: 19304929 [TBL] [Abstract][Full Text] [Related]
5. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Haydon MJ; Kawachi M; Wirtz M; Hillmer S; Hell R; Krämer U Plant Cell; 2012 Feb; 24(2):724-37. PubMed ID: 22374397 [TBL] [Abstract][Full Text] [Related]
6. Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronerva. Herbik A; Giritch A; Horstmann C; Becker R; Balzer HJ; Bäumlein H; Stephan UW Plant Physiol; 1996 Jun; 111(2):533-40. PubMed ID: 8787027 [TBL] [Abstract][Full Text] [Related]
7. Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions. Pavlovic J; Samardzic J; Kostic L; Laursen KH; Natic M; Timotijevic G; Schjoerring JK; Nikolic M Ann Bot; 2016 Aug; 118(2):271-80. PubMed ID: 27371693 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms associated with Fe-deficiency tolerance and signaling in shoots of Pisum sativum. Kabir AH; Paltridge NG; Roessner U; Stangoulis JC Physiol Plant; 2013 Mar; 147(3):381-95. PubMed ID: 22913816 [TBL] [Abstract][Full Text] [Related]
9. Increased sensitivity to iron deficiency in Arabidopsis thaliana overaccumulating nicotianamine. Cassin G; Mari S; Curie C; Briat JF; Czernic P J Exp Bot; 2009; 60(4):1249-59. PubMed ID: 19188276 [TBL] [Abstract][Full Text] [Related]
10. Nicotianamine in zinc and iron homeostasis. Hofmann NR Plant Cell; 2012 Feb; 24(2):373. PubMed ID: 22374391 [No Abstract] [Full Text] [Related]
11. Approach to engineer tomato by expression of AtHMA4 to enhance Zn in the aerial parts. Kendziorek M; Barabasz A; Rudzka J; Tracz K; Mills RF; Williams LE; Antosiewicz DM J Plant Physiol; 2014 Sep; 171(15):1413-22. PubMed ID: 25046762 [TBL] [Abstract][Full Text] [Related]
12. Nicotianamine functions in the Phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis. Schuler M; Rellán-Álvarez R; Fink-Straube C; Abadía J; Bauer P Plant Cell; 2012 Jun; 24(6):2380-400. PubMed ID: 22706286 [TBL] [Abstract][Full Text] [Related]
13. Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Waters BM; Blevins DG; Eide DJ Plant Physiol; 2002 May; 129(1):85-94. PubMed ID: 12011340 [TBL] [Abstract][Full Text] [Related]
14. Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Cohen CK; Garvin DF; Kochian LV Planta; 2004 Mar; 218(5):784-92. PubMed ID: 14648120 [TBL] [Abstract][Full Text] [Related]
15. The ratio of phytosiderophores nicotianamine to deoxymugenic acid controls metal homeostasis in rice. Banakar R; Fernandez AA; Zhu C; Abadia J; Capell T; Christou P Planta; 2019 Oct; 250(4):1339-1354. PubMed ID: 31278466 [TBL] [Abstract][Full Text] [Related]
16. Theoretical studies on the coordination chemistry of phytosiderophores with special reference to Fe-nicotianamine complexes in graminaceous plants. Gopika S; Augustine C J Mol Model; 2022 Feb; 28(3):71. PubMed ID: 35226207 [TBL] [Abstract][Full Text] [Related]
17. Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability. Tsednee M; Yang SC; Lee DC; Yeh KC Plant Physiol; 2014 Oct; 166(2):839-52. PubMed ID: 25118254 [TBL] [Abstract][Full Text] [Related]
18. Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium. Banakar R; Alvarez Fernandez A; Díaz-Benito P; Abadia J; Capell T; Christou P J Exp Bot; 2017 Oct; 68(17):4983-4995. PubMed ID: 29048564 [TBL] [Abstract][Full Text] [Related]
19. Genetic basis of the historical iron-accumulating dgl and brz mutants in pea. Harrington SA; Franceschetti M; Balk J Plant J; 2024 Jan; 117(2):590-598. PubMed ID: 37882414 [TBL] [Abstract][Full Text] [Related]
20. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Le Jean M; Schikora A; Mari S; Briat JF; Curie C Plant J; 2005 Dec; 44(5):769-82. PubMed ID: 16297069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]