These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1172234)

  • 1. Viscous and inertial fractions of total perfusion energy dissipation in the coronary circulation of the in situ perfused dog heart.
    Höfling B; von Restorff W; Holtz J; Bassenge E
    Pflugers Arch; 1975 Jul; 358(1):1-10. PubMed ID: 1172234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of perfusate rheology on the diastolic coronary pressure-flow relationship.
    Drossner M; Aversano T
    Am J Physiol; 1990 Aug; 259(2 Pt 2):H603-9. PubMed ID: 2386230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hematocrit and inertial losses on pressure-flow relations in the isolated hindpaw o the dog.
    Benis AM; Usami S; Chien S
    Circ Res; 1970 Dec; 27(6):1047-68. PubMed ID: 5487071
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparison of dextran and hematocrit effects in the pulmonary microcirculation.
    Raj JU; Anderson J
    Circ Res; 1991 Apr; 68(4):1108-16. PubMed ID: 1706965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red blood cell aggregation and blood viscosity in an isolated heart preparation.
    Charansonney O; Mouren S; Dufaux J; Duvelleroy M; Vicaut E
    Biorheology; 1993; 30(1):75-84. PubMed ID: 7690613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity.
    Sevick EM; Jain RK
    Cancer Res; 1989 Jul; 49(13):3513-9. PubMed ID: 2731173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial pressure loss in hemodilution. Significance in coronary pressure-flow relationship.
    Bassenge E; Höfling B; von Restorff W
    Bibl Haematol; 1975; (41):140-51. PubMed ID: 1180826
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of increased blood fluidity through hemodilution on coronary circulation at rest and during exercise in dogs.
    von Restorff W; Höfling B; Holtz J; Bassenge E
    Pflugers Arch; 1975; 357(1-2):15-24. PubMed ID: 1171454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does colloid-induced plasma hyperviscosity in haemodilution jeopardize perfusion and oxygenation of vital organs?
    Krieter H; Brückner UB; Kefalianakis F; Messmer K
    Acta Anaesthesiol Scand; 1995 Feb; 39(2):236-44. PubMed ID: 7540790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of plasma- and cell-free perfusates on filtration coefficient of perfused canine lungs.
    Rippe B; Townsley MI; Taylor AE
    J Appl Physiol (1985); 1985 May; 58(5):1521-7. PubMed ID: 2581928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of regional myocardial oxygen supply in the left ventricle. An experimental study in the in situ working canine heart.
    Eliasen P
    Dan Med Bull; 1987 Dec; 34(6):277-89. PubMed ID: 3325232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary pressure-flow relations in hypertensive left ventricular hypertrophy. Comparison of intact autoregulation with physiological and pharmacological vasodilation in the dog.
    Jeremy RW; Fletcher PJ; Thompson J
    Circ Res; 1989 Jul; 65(1):224-36. PubMed ID: 2525430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial pressure losses in perfused hindlimb: a reinterpretation of the results of Whittaker and Winton.
    Benis AM; Chien S; Usami S; Jan KM
    J Appl Physiol; 1973 Mar; 34(3):383-9. PubMed ID: 4688132
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow.
    Bache RJ; Schwartz JS
    Circulation; 1982 May; 65(5):928-35. PubMed ID: 7074755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myocardial oxygen consumption and segmental shortening during selective coronary hemodilution in dogs.
    Crystal GJ; Salem MR
    Anesth Analg; 1988 Jun; 67(6):500-8. PubMed ID: 3377204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hematocrit variations on coronary hemodynamics and oxygen utilization.
    Jan KM; Chien S
    Am J Physiol; 1977 Jul; 233(1):H106-13. PubMed ID: 879327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of perfusion and oxygenation by red blood cell oxygen affinity during acute anemia.
    Cabrales P; Tsai AG; Intaglietta M
    Am J Respir Cell Mol Biol; 2008 Mar; 38(3):354-61. PubMed ID: 17884988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of increased blood viscosity on pulmonary vascular resistance.
    Nihill MR; McNamara DG; Vick RL
    Am Heart J; 1976 Jul; 92(1):65-72. PubMed ID: 961577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of blood viscosity on plasma renin activity and renal hemodynamics.
    Simchon S; Chen RY; Carlin RD; Fan FC; Jan KM; Chien S
    Am J Physiol; 1986 Jan; 250(1 Pt 2):F40-6. PubMed ID: 2417501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum myocardial oxygen transport during anemia and polycythemia in dogs.
    Baer RW; Vlahakes GJ; Uhlig PN; Hoffman JI
    Am J Physiol; 1987 Jun; 252(6 Pt 2):H1086-95. PubMed ID: 3591963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.