These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 11722542)
1. Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach. Liu WT; Mirzabekov AD; Stahl DA Environ Microbiol; 2001 Oct; 3(10):619-29. PubMed ID: 11722542 [TBL] [Abstract][Full Text] [Related]
2. Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays. Urakawa H; El Fantroussi S; Smidt H; Smoot JC; Tribou EH; Kelly JJ; Noble PA; Stahl DA Appl Environ Microbiol; 2003 May; 69(5):2848-56. PubMed ID: 12732557 [TBL] [Abstract][Full Text] [Related]
3. Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Guschin DY; Mobarry BK; Proudnikov D; Stahl DA; Rittmann BE; Mirzabekov AD Appl Environ Microbiol; 1997 Jun; 63(6):2397-402. PubMed ID: 9172361 [TBL] [Abstract][Full Text] [Related]
4. Direct profiling of environmental microbial populations by thermal dissociation analysis of native rRNAs hybridized to oligonucleotide microarrays. El Fantroussi S; Urakawa H; Bernhard AE; Kelly JJ; Noble PA; Smidt H; Yershov GM; Stahl DA Appl Environ Microbiol; 2003 Apr; 69(4):2377-82. PubMed ID: 12676724 [TBL] [Abstract][Full Text] [Related]
5. Oligonucleotide microarray for identification of Bacillus anthracis based on intergenic transcribed spacers in ribosomal DNA. Nübel U; Schmidt PM; Reiss E; Bier F; Beyer W; Naumann D FEMS Microbiol Lett; 2004 Nov; 240(2):215-23. PubMed ID: 15522510 [TBL] [Abstract][Full Text] [Related]
6. Evaluating single-base-pair discriminating capability of planar oligonucleotide microchips using a non-equilibrium dissociation approach. Li ES; Ng JK; Wu JH; Liu WT Environ Microbiol; 2004 Nov; 6(11):1197-202. PubMed ID: 15479252 [TBL] [Abstract][Full Text] [Related]
7. Discrimination between perfect and mismatched duplexes with oligonucleotide gel microchips: role of thermodynamic and kinetic effects during hybridization. Sorokin NV; Chechetkin VR; Livshits MA; Pan'kov SV; Donnikov MY; Gryadunov DA; Lapa SA; Zasedatelev AS J Biomol Struct Dyn; 2005 Jun; 22(6):725-34. PubMed ID: 15842177 [TBL] [Abstract][Full Text] [Related]
8. LNA-modified isothermal oligonucleotide microarray for differentiating bacilli of similar origin. Yan J; Yuan Y; Mu R; Shang H; Guan Y J Biosci; 2014 Dec; 39(5):795-804. PubMed ID: 25431409 [TBL] [Abstract][Full Text] [Related]
9. On-chip non-equilibrium dissociation curves and dissociation rate constants as methods to assess specificity of oligonucleotide probes. Wick LM; Rouillard JM; Whittam TS; Gulari E; Tiedje JM; Hashsham SA Nucleic Acids Res; 2006 Feb; 34(3):e26. PubMed ID: 16478712 [TBL] [Abstract][Full Text] [Related]
10. Modeling formamide denaturation of probe-target hybrids for improved microarray probe design in microbial diagnostics. Yilmaz LS; Loy A; Wright ES; Wagner M; Noguera DR PLoS One; 2012; 7(8):e43862. PubMed ID: 22952791 [TBL] [Abstract][Full Text] [Related]
11. Base pair interactions and hybridization isotherms of matched and mismatched oligonucleotide probes on microarrays. Binder H; Preibisch S; Kirsten T Langmuir; 2005 Sep; 21(20):9287-302. PubMed ID: 16171364 [TBL] [Abstract][Full Text] [Related]
13. [Analysis of perfect and mismatched DNA duplexes by a generic hexanucleotide microchip]. Khomiakova EB; Livshits MA; Sharonov AIu; Prokopenko DV; Mirzabekov AD Mol Biol (Mosk); 2003; 37(4):726-41. PubMed ID: 12942647 [TBL] [Abstract][Full Text] [Related]
14. Discrimination of shifts in a soil microbial community associated with TNT-contamination using a functional ANOVA of 16S rRNA hybridized to oligonucleotide microarrays. Eyers L; Smoot JC; Smoot LM; Bugli C; Urakawa H; McMurry Z; Siripong S; El-Fantroussi S; Lambert P; Agathos SN; Stahl DA Environ Sci Technol; 2006 Oct; 40(19):5867-73. PubMed ID: 17051772 [TBL] [Abstract][Full Text] [Related]
15. Development of a high-resolution melting-based approach for efficient differentiation among Bacillus cereus group isolates. Antolinos V; Fernández PS; Ros-Chumillas M; Periago PM; Weiss J Foodborne Pathog Dis; 2012 Sep; 9(9):777-85. PubMed ID: 22881064 [TBL] [Abstract][Full Text] [Related]
16. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies. Rössler D; Ludwig W; Schleifer KH; Lin C; McGill TJ; Wisotzkey JD; Jurtshuk P; Fox GE Syst Appl Microbiol; 1991; 14(3):266-9. PubMed ID: 11538306 [TBL] [Abstract][Full Text] [Related]
17. Single-base-pair discrimination of terminal mismatches by using oligonucleotide microarrays and neural network analyses. Urakawa H; Noble PA; El Fantroussi S; Kelly JJ; Stahl DA Appl Environ Microbiol; 2002 Jan; 68(1):235-44. PubMed ID: 11772632 [TBL] [Abstract][Full Text] [Related]
18. Phylogenetic analysis of Bacillus sphaericus and development of an oligonucleotide probe specific for mosquito-pathogenic strains. Aquino de Muro M; Priest FG FEMS Microbiol Lett; 1993 Sep; 112(2):205-10. PubMed ID: 7691684 [TBL] [Abstract][Full Text] [Related]
19. Development of a statistically robust quantification method for microorganisms in mixtures using oligonucleotide microarrays. Pozhitkov AE; Bailey KD; Noble PA J Microbiol Methods; 2007 Aug; 70(2):292-300. PubMed ID: 17553581 [TBL] [Abstract][Full Text] [Related]
20. Use of hybridization melting kinetics for detecting Phytophthora species using three-dimensional microarrays: demonstration of a novel concept for the differentiation of detection targets. Anderson N; Szemes M; O'Brien P; de Weerdt M; Schoen C; Boender P; Bonants P Mycol Res; 2006 Jun; 110(Pt 6):664-71. PubMed ID: 16769210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]