These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11722545)

  • 1. Bioaugmentation of soils by increasing microbial richness: missing links.
    Dejonghe W; Boon N; Seghers D; Top EM; Verstraete W
    Environ Microbiol; 2001 Oct; 3(10):649-57. PubMed ID: 11722545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Soil microbial ecological process and microbial functional gene diversity].
    Zhang J; Zhang H; Li X; Su Z; Zhang C
    Ying Yong Sheng Tai Xue Bao; 2006 Jun; 17(6):1129-32. PubMed ID: 16964955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils.
    Wolf DC; Cryder Z; Gan J
    Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms.
    Jung J; Philippot L; Park W
    Sci Rep; 2016 Mar; 6():23012. PubMed ID: 26972977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaugmentation of chlorothalonil-contaminated soil with hydrolytically or reductively dehalogenating strain and its effect on soil microbial community.
    Xu XH; Liu XM; Zhang L; Mu Y; Zhu XY; Fang JY; Li SP; Jiang JD
    J Hazard Mater; 2018 Jun; 351():240-249. PubMed ID: 29550558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaugmentation as a soil bioremediation approach.
    Vogel TM
    Curr Opin Biotechnol; 1996 Jun; 7(3):311-6. PubMed ID: 8785436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective.
    Robertson SJ; McGill WB; Massicotte HB; Rutherford PM
    Biol Rev Camb Philos Soc; 2007 May; 82(2):213-40. PubMed ID: 17437558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil.
    Viñas M; Sabaté J; Espuny MJ; Solanas AM
    Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers.
    Chi XQ; Zhang JJ; Zhao S; Zhou NY
    Environ Pollut; 2013 Jan; 172():33-41. PubMed ID: 22982551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial diversity assessment of polychlorinated biphenyl-contaminated soils and the biostimulation and bioaugmentation processes.
    Cervantes-González E; Guevara-García MA; García-Mena J; Ovando-Medina VM
    Environ Monit Assess; 2019 Jan; 191(2):118. PubMed ID: 30706145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A previously unexposed forest soil microbial community degrades high levels of the pollutant 2,4,6-trichlorophenol.
    Sánchez MA; Vásquez M; González B
    Appl Environ Microbiol; 2004 Dec; 70(12):7567-70. PubMed ID: 15574963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil microbial diversity: Methodological strategy, spatial overview and functional interest.
    Maron PA; Mougel C; Ranjard L
    C R Biol; 2011 May; 334(5-6):403-11. PubMed ID: 21640949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds.
    Mrozik A; Piotrowska-Seget Z
    Microbiol Res; 2010 Jul; 165(5):363-75. PubMed ID: 19735995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaugmentation with Pseudomonas sp. strain MHP41 promotes simazine attenuation and bacterial community changes in agricultural soils.
    Morgante V; López-López A; Flores C; González M; González B; Vásquez M; Rosselló-Mora R; Seeger M
    FEMS Microbiol Ecol; 2010 Jan; 71(1):114-26. PubMed ID: 19889033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biodegradation of cable oil components: impact of oil concentration, nutrient addition and bioaugmentation.
    Towell MG; Paton GI; Semple KT
    Environ Pollut; 2011 Dec; 159(12):3777-83. PubMed ID: 21872976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community.
    Simarro R; González N; Bautista LF; Molina MC
    J Hazard Mater; 2013 Nov; 262():158-67. PubMed ID: 24025312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive long-term monitoring of soil health in metal phytostabilization: ecological attributes and ecosystem services based on soil microbial parameters.
    Epelde L; Becerril JM; Alkorta I; Garbisu C
    Int J Phytoremediation; 2014; 16(7-12):971-81. PubMed ID: 24933897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Microbial Community Structure Shift During Bioremediation of Petroleum Contaminated Soil Using High Throughput Sequencing].
    Qi YY; Wu ML; Zhu CC; Ye XQ; Xu HN
    Huan Jing Ke Xue; 2019 Feb; 40(2):869-875. PubMed ID: 30628355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspectives and vision for strain selection in bioaugmentation.
    Singer AC; van der Gast CJ; Thompson IP
    Trends Biotechnol; 2005 Feb; 23(2):74-7. PubMed ID: 15661343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils.
    Gill AS; Lee A; McGuire KL
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28576763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.