BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11722560)

  • 1. Characterization of a major form of human isatin reductase and the reduced metabolite.
    Usami N; Kitahara K; Ishikura S; Nagano M; Sakai S; Hara A
    Eur J Biochem; 2001 Nov; 268(22):5755-63. PubMed ID: 11722560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fungal enzyme, NADPH-dependent carbonyl reductase, showing high specificity to conjugated polyketones. Purification and characterization.
    Shimizu S; Hattori S; Hata H; Yamada H
    Eur J Biochem; 1988 May; 174(1):37-44. PubMed ID: 3286260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members.
    O'connor T; Ireland LS; Harrison DJ; Hayes JD
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):487-504. PubMed ID: 10510318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rabbit 3-hydroxyhexobarbital dehydrogenase is a NADPH-preferring reductase with broad substrate specificity for ketosteroids, prostaglandin D₂, and other endogenous and xenobiotic carbonyl compounds.
    Endo S; Matsunaga T; Matsumoto A; Arai Y; Ohno S; El-Kabbani O; Tajima K; Bunai Y; Yamano S; Hara A; Kitade Y
    Biochem Pharmacol; 2013 Nov; 86(9):1366-75. PubMed ID: 23994167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and properties of prostaglandin 9-ketoreductase from pig and human kidney. Identity with human carbonyl reductase.
    Schieber A; Frank RW; Ghisla S
    Eur J Biochem; 1992 Jun; 206(2):491-502. PubMed ID: 1597188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of four rabbit aldo-keto reductases featuring broad substrate specificity for xenobiotic and endogenous carbonyl compounds: relationship with multiple forms of drug ketone reductases.
    Endo S; Matsunaga T; Arai Y; Ikari A; Tajima K; El-Kabbani O; Yamano S; Hara A; Kitade Y
    Drug Metab Dispos; 2014 Apr; 42(4):803-12. PubMed ID: 24510382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of mouse aldo-keto reductase AKR7A5.
    Hinshelwood A; McGarvie G; Ellis EM
    Chem Biol Interact; 2003 Feb; 143-144():263-9. PubMed ID: 12604212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic properties of a member (AKR1C19) of the aldo-keto reductase family.
    Ishikura S; Horie K; Sanai M; Matsumoto K; Hara A
    Biol Pharm Bull; 2005 Jun; 28(6):1075-8. PubMed ID: 15930748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel NADPH-dependent carbonyl reductase of Candida macedoniensis: purification and characterization.
    Kataoka M; Doi Y; Sim TS; Shimizu S; Yamada H
    Arch Biochem Biophys; 1992 May; 294(2):469-74. PubMed ID: 1567202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lens aldo-keto reductase of Camelus dromedarius: purification and properties.
    Del Corso A; Barsacchi D; Osman AM; Mohamed AS; Tozzi MG; Camici M; Mura U
    Biochim Biophys Acta; 1989 Oct; 993(1):116-20. PubMed ID: 2679888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonyl reductase from human testis: purification and comparison with carbonyl reductase from human brain and rat testis.
    Inazu N; Ruepp B; Wirth H; Wermuth B
    Biochim Biophys Acta; 1992 Mar; 1116(1):50-6. PubMed ID: 1540623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chinese hamster monomeric carbonyl reductases of the short-chain dehydrogenase/reductase superfamily.
    Miura T; Nishinaka T; Takama M; Murakami M; Terada T
    Chem Biol Interact; 2009 Mar; 178(1-3):110-6. PubMed ID: 18983989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase.
    Wermuth B
    J Biol Chem; 1981 Feb; 256(3):1206-13. PubMed ID: 7005231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for substrate specificity in human monomeric carbonyl reductases.
    Pilka ES; Niesen FH; Lee WH; El-Hawari Y; Dunford JE; Kochan G; Wsol V; Martin HJ; Maser E; Oppermann U
    PLoS One; 2009 Oct; 4(10):e7113. PubMed ID: 19841672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of recombinant YakC of Schizosaccharomyces pombe showing YakC defines a new family of aldo-keto reductases.
    Morita T; Huruta T; Ashiuchi M; Yagi T
    J Biochem; 2002 Oct; 132(4):635-41. PubMed ID: 12359080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High carbonyl reductase activity in adrenal gland and ovary emphasizes its role in carbonyl compound detoxication.
    Maser E; Hoffmann JG; Friebertshäuser J; Netter KJ
    Toxicology; 1992 Aug; 74(1):45-56. PubMed ID: 1514187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The purification and properties of NADPH-dependent carbonyl reductases from rat ovary.
    Iwata N; Inazu N; Satoh T
    J Biochem; 1989 Apr; 105(4):556-64. PubMed ID: 2503498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and properties of six aldo-keto reductases from rat adrenal gland.
    Inazu N; Nagashima Y; Satoh T; Fujii T
    J Biochem; 1994 May; 115(5):991-9. PubMed ID: 7961617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an oligomeric carbonyl reductase of dog liver: its identity with peroxisomal tetrameric carbonyl reductase.
    Endo S; Matsunaga T; Nagano M; Abe H; Ishikura S; Imamura Y; Hara A
    Biol Pharm Bull; 2007 Sep; 30(9):1787-91. PubMed ID: 17827741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonyl reductase sniffer from the model organism daphnia: Cloning, substrate determination and inhibitory sensitivity.
    Strehse JS; Protopapas N; Maser E
    Chem Biol Interact; 2019 Jul; 307():29-36. PubMed ID: 30991043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.