These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 11722568)
1. The NADH oxidase from Pyrococcus furiosus. Implications for the protection of anaerobic hyperthermophiles against oxidative stress. Ward DE; Donnelly CJ; Mullendore ME; van der Oost J; de Vos WM; Crane EJ Eur J Biochem; 2001 Nov; 268(22):5816-23. PubMed ID: 11722568 [TBL] [Abstract][Full Text] [Related]
2. Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles. Harris DR; Ward DE; Feasel JM; Lancaster KM; Murphy RD; Mallet TC; Crane EJ FEBS J; 2005 Mar; 272(5):1189-200. PubMed ID: 15720393 [TBL] [Abstract][Full Text] [Related]
3. A hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus. Niimura Y; Nishiyama Y; Saito D; Tsuji H; Hidaka M; Miyaji T; Watanabe T; Massey V J Bacteriol; 2000 Sep; 182(18):5046-51. PubMed ID: 10960086 [TBL] [Abstract][Full Text] [Related]
4. In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus. Grunden AM; Jenney FE; Ma K; Ji M; Weinberg MV; Adams MW Appl Environ Microbiol; 2005 Mar; 71(3):1522-30. PubMed ID: 15746356 [TBL] [Abstract][Full Text] [Related]
5. A flavoprotein functional as NADH oxidase from Amphibacillus xylanus Ep01: purification and characterization of the enzyme and structural analysis of its gene. Niimura Y; Ohnishi K; Yarita Y; Hidaka M; Masaki H; Uchimura T; Suzuki H; Kozaki M; Uozumi T J Bacteriol; 1993 Dec; 175(24):7945-50. PubMed ID: 8253683 [TBL] [Abstract][Full Text] [Related]
7. Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl-hydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl-hydroperoxide reductase 22-kDa protein component. Niimura Y; Poole LB; Massey V J Biol Chem; 1995 Oct; 270(43):25645-50. PubMed ID: 7592740 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning and analysis of the gene encoding the NADH oxidase from Streptococcus faecalis 10C1. Comparison with NADH peroxidase and the flavoprotein disulfide reductases. Ross RP; Claiborne A J Mol Biol; 1992 Oct; 227(3):658-71. PubMed ID: 1404382 [TBL] [Abstract][Full Text] [Related]
9. Characterization of an NADH oxidase of the flavin-dependent disulfide reductase family from Methanocaldococcus jannaschii. Case CL; Rodriguez JR; Mukhopadhyay B Microbiology (Reading); 2009 Jan; 155(Pt 1):69-79. PubMed ID: 19118348 [TBL] [Abstract][Full Text] [Related]
10. Molecular characterization of H2O2-forming NADH oxidases from Archaeoglobus fulgidus. Kengen SW; van der Oost J; de Vos WM Eur J Biochem; 2003 Jul; 270(13):2885-94. PubMed ID: 12823559 [TBL] [Abstract][Full Text] [Related]
11. Oxidative stress protection and the repair response to hydrogen peroxide in the hyperthermophilic archaeon Pyrococcus furiosus and in related species. Strand KR; Sun C; Li T; Jenney FE; Schut GJ; Adams MW Arch Microbiol; 2010 Jun; 192(6):447-59. PubMed ID: 20379702 [TBL] [Abstract][Full Text] [Related]
12. A NAD(P)H oxidase isolated from the archaeon Sulfolobus solfataricus is not homologous with another NADH oxidase present in the same microorganism. Biochemical characterization of the enzyme and cloning of the encoding gene. Arcari P; Masullo L; Masullo M; Catanzano F; Bocchini V J Biol Chem; 2000 Jan; 275(2):895-900. PubMed ID: 10625624 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of a water-forming NADH oxidase from Methanobrevibacter smithii, an archaeon in the human gut. Yan M; Yin W; Fang X; Guo J; Shi H Biosci Rep; 2016 Dec; 36(6):. PubMed ID: 27737924 [TBL] [Abstract][Full Text] [Related]
14. b-type dihydroorotate dehydrogenase is purified as a H2O2-forming NADH oxidase from Bifidobacterium bifidum. Kawasaki S; Satoh T; Todoroki M; Niimura Y Appl Environ Microbiol; 2009 Feb; 75(3):629-36. PubMed ID: 19060157 [TBL] [Abstract][Full Text] [Related]
15. Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579. Wang L; Chong H; Jiang R Appl Microbiol Biotechnol; 2012 Dec; 96(5):1265-73. PubMed ID: 22311647 [TBL] [Abstract][Full Text] [Related]
16. Identification of the gene encoding NADH-rubredoxin oxidoreductase in Clostridium acetobutylicum. Guedon E; Petitdemange H Biochem Biophys Res Commun; 2001 Jul; 285(2):496-502. PubMed ID: 11444870 [TBL] [Abstract][Full Text] [Related]
17. Purification and characterization of thermostable H2O2-forming NADH oxidase from 2-phenylethanol-assimilating Brevibacterium sp. KU1309. Hirano J; Miyamoto K; Ohta H Appl Microbiol Biotechnol; 2008 Aug; 80(1):71-8. PubMed ID: 18521590 [TBL] [Abstract][Full Text] [Related]
18. Cloning and characterization of a thermostable H2O-forming NADH oxidase from Lactobacillus rhamnosus. Zhang YW; Tiwari MK; Gao H; Dhiman SS; Jeya M; Lee JK Enzyme Microb Technol; 2012 Apr; 50(4-5):255-62. PubMed ID: 22418266 [TBL] [Abstract][Full Text] [Related]
19. Streptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein. Poole LB; Higuchi M; Shimada M; Calzi ML; Kamio Y Free Radic Biol Med; 2000 Jan; 28(1):108-20. PubMed ID: 10656297 [TBL] [Abstract][Full Text] [Related]
20. Studies on NADH oxidase and alkyl hydroperoxide reductase produced by Porphyromonas gingivalis. Diaz PI; Zilm PS; Wasinger V; Corthals GL; Rogers AH Oral Microbiol Immunol; 2004 Jun; 19(3):137-43. PubMed ID: 15107063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]