These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 11722737)
1. Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response. Turgay K; Persuh M; Hahn J; Dubnau D Mol Microbiol; 2001 Nov; 42(3):717-27. PubMed ID: 11722737 [TBL] [Abstract][Full Text] [Related]
2. The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Persuh M; Turgay K; Mandic-Mulec I; Dubnau D Mol Microbiol; 1999 Aug; 33(4):886-94. PubMed ID: 10447896 [TBL] [Abstract][Full Text] [Related]
3. Spx (YjbD), a negative effector of competence in Bacillus subtilis, enhances ClpC-MecA-ComK interaction. Nakano MM; Nakano S; Zuber P Mol Microbiol; 2002 Jun; 44(5):1341-9. PubMed ID: 12028382 [TBL] [Abstract][Full Text] [Related]
4. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis. Nakano MM; Hajarizadeh F; Zhu Y; Zuber P Mol Microbiol; 2001 Oct; 42(2):383-94. PubMed ID: 11703662 [TBL] [Abstract][Full Text] [Related]
5. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Turgay K; Hamoen LW; Venema G; Dubnau D Genes Dev; 1997 Jan; 11(1):119-28. PubMed ID: 9000055 [TBL] [Abstract][Full Text] [Related]
6. MecA, an adaptor protein necessary for ClpC chaperone activity. Schlothauer T; Mogk A; Dougan DA; Bukau B; Turgay K Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2306-11. PubMed ID: 12598648 [TBL] [Abstract][Full Text] [Related]
7. Structure and mechanism of the hexameric MecA-ClpC molecular machine. Wang F; Mei Z; Qi Y; Yan C; Hu Q; Wang J; Shi Y Nature; 2011 Mar; 471(7338):331-5. PubMed ID: 21368759 [TBL] [Abstract][Full Text] [Related]
8. ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Msadek T; Dartois V; Kunst F; Herbaud ML; Denizot F; Rapoport G Mol Microbiol; 1998 Mar; 27(5):899-914. PubMed ID: 9535081 [TBL] [Abstract][Full Text] [Related]
9. A MecA paralog, YpbH, binds ClpC, affecting both competence and sporulation. Persuh M; Mandic-Mulec I; Dubnau D J Bacteriol; 2002 Apr; 184(8):2310-3. PubMed ID: 11914365 [TBL] [Abstract][Full Text] [Related]
10. Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine. Liu J; Mei Z; Li N; Qi Y; Xu Y; Shi Y; Wang F; Lei J; Gao N J Biol Chem; 2013 Jun; 288(24):17597-608. PubMed ID: 23595989 [TBL] [Abstract][Full Text] [Related]
11. Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Ogura M; Liu L; Lacelle M; Nakano MM; Zuber P Mol Microbiol; 1999 May; 32(4):799-812. PubMed ID: 10361283 [TBL] [Abstract][Full Text] [Related]
12. Molecular determinants of MecA as a degradation tag for the ClpCP protease. Mei Z; Wang F; Qi Y; Zhou Z; Hu Q; Li H; Wu J; Shi Y J Biol Chem; 2009 Dec; 284(49):34366-75. PubMed ID: 19767395 [TBL] [Abstract][Full Text] [Related]
13. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. Turgay K; Hahn J; Burghoorn J; Dubnau D EMBO J; 1998 Nov; 17(22):6730-8. PubMed ID: 9890793 [TBL] [Abstract][Full Text] [Related]
14. MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Msadek T; Kunst F; Rapoport G Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5788-92. PubMed ID: 8016066 [TBL] [Abstract][Full Text] [Related]
15. ClpC and MecA, components of a proteolytic machine, prevent Spo0A-P-dependent transcription without degradation. Tanner AW; Carabetta VJ; Dubnau D Mol Microbiol; 2018 Apr; 108(2):178-186. PubMed ID: 29446505 [TBL] [Abstract][Full Text] [Related]
16. Regulated proteolysis of the alternative sigma factor SigX in Streptococcus mutans: implication in the escape from competence. Dong G; Tian XL; Gomez ZA; Li YH BMC Microbiol; 2014 Jul; 14():183. PubMed ID: 25005884 [TBL] [Abstract][Full Text] [Related]
17. Multiple pathways of Spx (YjbD) proteolysis in Bacillus subtilis. Nakano S; Zheng G; Nakano MM; Zuber P J Bacteriol; 2002 Jul; 184(13):3664-70. PubMed ID: 12057962 [TBL] [Abstract][Full Text] [Related]
18. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827 [TBL] [Abstract][Full Text] [Related]