BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 11722896)

  • 1. Citrate metabolism by Enterococcus faecalis FAIR-E 229.
    Sarantinopoulos P; Kalantzopoulos G; Tsakalidou E
    Appl Environ Microbiol; 2001 Dec; 67(12):5482-7. PubMed ID: 11722896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and energy generation by Enterococcus faecium FAIR-E 198 during citrate metabolism.
    Sarantinopoulos P; Makras L; Vaningelgem F; Kalantzopoulos G; De Vuyst L; Tsakalidou E
    Int J Food Microbiol; 2003 Jul; 84(2):197-206. PubMed ID: 12781942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose prevents citrate metabolism by enterococci.
    Rea MC; Cogan TM
    Int J Food Microbiol; 2003 Dec; 88(2-3):201-6. PubMed ID: 14596991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cometabolism of citrate and glucose by Enterococcus faecium FAIR-E 198 in the absence of cellular growth.
    Vaningelgem F; Ghijsels V; Tsakalidou E; De Vuyst L
    Appl Environ Microbiol; 2006 Jan; 72(1):319-26. PubMed ID: 16391060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Citrate metabolism by Enterococcus faecium and Enterococcus durans isolated from goat's and ewe's milk: influence of glucose and lactose.
    Cabral ME; Abeijón Mukdsi MC; Medina de Figueroa RB; González SN
    Can J Microbiol; 2007 May; 53(5):607-15. PubMed ID: 17668019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite repression in Enterococcus faecalis.
    Rea MC; Cogan TM
    Syst Appl Microbiol; 2003 Jun; 26(2):159-64. PubMed ID: 12866840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Commensal symbiosis between a Lactococcus lactis strain and an Enterococcus mundtii strain increases cell yield in constituted broth.
    Kimoto-Nira H; Ohmori H; Suzuki C
    J Dairy Sci; 2012 Nov; 95(11):6372-8. PubMed ID: 22981578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of lactose and citrate by mutants of Lactococcus lactis producing excess carbon dioxide.
    El Attar A; Monnet C; Corrieu G
    J Dairy Res; 2000 Nov; 67(4):571-83. PubMed ID: 11131070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Citrate uptake in exchange with intermediates in the citrate metabolic pathway in Lactococcus lactis IL1403.
    Pudlik AM; Lolkema JS
    J Bacteriol; 2011 Feb; 193(3):706-14. PubMed ID: 21115655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Barotolerant variant of Streptococcus faecalis with reduced sensitivity to glucose catabolite repression.
    Campbell J; Bender GR; Marquis RE
    Can J Microbiol; 1985 Jul; 31(7):644-50. PubMed ID: 3928124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of the expression of Enterococcus faecalis citrate fermentation genes during infection.
    Martino GP; Perez CE; Magni C; Blancato VS
    PLoS One; 2018; 13(10):e0205787. PubMed ID: 30335810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol.
    Rana NF; Gente S; Rincé A; Auffray Y; Laplace JM
    Biotechnol Lett; 2012 Sep; 34(9):1651-7. PubMed ID: 22628022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactic acid fermentation is the main aerobic metabolic pathway in Enterococcus faecalis metabolizing a high concentration of glycerol.
    Doi Y
    Appl Microbiol Biotechnol; 2018 Dec; 102(23):10183-10192. PubMed ID: 30232536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditions required for citrate utilization during growth of Lactobacillus casei ATCC334 in chemically defined medium and cheddar cheese extract.
    Díaz-Muñiz I; Steele JL
    Antonie Van Leeuwenhoek; 2006 Oct; 90(3):233-43. PubMed ID: 16841145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applicability of Lactococcus hircilactis and Lactococcus laudensis as dairy cultures.
    Tidona F; Meucci A; Povolo M; Pelizzola V; Zago M; Contarini G; Carminati D; Giraffa G
    Int J Food Microbiol; 2018 Apr; 271():1-7. PubMed ID: 29459243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of Lactobacillus paracasei ATCC 334 in a cheese model system: a biochemical approach.
    Budinich MF; Perez-Díaz I; Cai H; Rankin SA; Broadbent JR; Steele JL
    J Dairy Sci; 2011 Nov; 94(11):5263-77. PubMed ID: 22032349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium.
    Bove CG; De Angelis M; Gatti M; Calasso M; Neviani E; Gobbetti M
    Proteomics; 2012 Nov; 12(21):3206-18. PubMed ID: 22965658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Citrate catabolism and production of acetate and succinate by Lactobacillus helveticus ATCC 15807.
    Torino MI; Taranto MP; Font de Valdez G
    Appl Microbiol Biotechnol; 2005 Nov; 69(1):79-85. PubMed ID: 15770479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technological properties of Enterococcus faecium isolated from ewe's milk and cheese with importance for flavour development.
    Abeijón MC; Medina RB; Katz MB; González SN
    Can J Microbiol; 2006 Mar; 52(3):237-45. PubMed ID: 16604120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster.
    Martino GP; Quintana IM; Espariz M; Blancato VS; Magni C
    Int J Food Microbiol; 2016 Feb; 218():27-37. PubMed ID: 26594791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.