These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11722905)

  • 1. Sorption of Fe (hydr)oxides to the surface of Shewanella putrefaciens: cell-bound fine-grained minerals are not always formed de novo.
    Glasauer S; Langley S; Beveridge TJ
    Appl Environ Microbiol; 2001 Dec; 67(12):5544-50. PubMed ID: 11722905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of Shewanella putrefaciens strain CN-32 cells and extracellular polymeric substances on the sorption of As(V) and As(III) on Fe(III)-(hydr)oxides.
    Huang JH; Elzinga EJ; Brechbuehl Y; Voegelin A; Kretzschmar R
    Environ Sci Technol; 2011 Apr; 45(7):2804-10. PubMed ID: 21375285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.
    Glasauer S; Langley S; Beveridge TJ
    Science; 2002 Jan; 295(5552):117-9. PubMed ID: 11778045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.
    Zegeye A; Mustin C; Jorand F
    Geobiology; 2010 Jun; 8(3):209-22. PubMed ID: 20398066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate imposed limitations on biological reduction and alteration of ferrihydrite.
    Borch T; Masue Y; Kukkadapu RK; Fendorf S
    Environ Sci Technol; 2007 Jan; 41(1):166-72. PubMed ID: 17265943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32.
    Huang JH; Voegelin A; Pombo SA; Lazzaro A; Zeyer J; Kretzschmar R
    Environ Sci Technol; 2011 Sep; 45(18):7701-9. PubMed ID: 21819067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Al substitution on sorption of diclofenac to Fe(III) (hydr)oxides: roles of phase transition and sorption mechanisms.
    Bahashi J; Bi E
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21314-21327. PubMed ID: 34761316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of aqueous Fe(II) on arsenate sorption on goethite and hematite.
    Catalano JG; Luo Y; Otemuyiwa B
    Environ Sci Technol; 2011 Oct; 45(20):8826-33. PubMed ID: 21899306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Bioreduction on Remobilization of Adsorbed Cadmium on Iron Minerals in Anoxic Condition.
    Ghorbanzadeh N; Lakzian A; Halajnia A; Choi UK; Kim KH; Kim JO; Kurade M; Jeon BH
    Water Environ Res; 2017 Jun; 89(6):519-526. PubMed ID: 28545603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATR-FTIR spectroscopy study of the influence of pH and contact time on the adhesion of Shewanella putrefaciens bacterial cells to the surface of hematite.
    Elzinga EJ; Huang JH; Chorover J; Kretzschmar R
    Environ Sci Technol; 2012 Dec; 46(23):12848-55. PubMed ID: 23136883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of Al-goethites on arsenate mobility.
    Silva J; Mello JW; Gasparon M; Abrahão WA; Ciminelli VS; Jong T
    Water Res; 2010 Nov; 44(19):5684-92. PubMed ID: 20638700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of clay minerals on sorption and bioreduction of arsenic under anoxic conditions.
    Ghorbanzadeh N; Lakzian A; Halajnia A; Kabra AN; Kurade MB; Lee DS; Jeon BH
    Environ Geochem Health; 2015 Dec; 37(6):997-1005. PubMed ID: 25971375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates.
    Shimizu M; Zhou J; Schröder C; Obst M; Kappler A; Borch T
    Environ Sci Technol; 2013; 47(23):13375-84. PubMed ID: 24219167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of NO3- and NO2- reduction by microbial Fe(III) reduction: evidence of a reaction between NO2- and cell surface-bound Fe2+.
    Coby AJ; Picardal FW
    Appl Environ Microbiol; 2005 Sep; 71(9):5267-74. PubMed ID: 16151113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens.
    Etique M; Jorand FP; Ruby C
    Geobiology; 2016 May; 14(3):237-54. PubMed ID: 26715461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of humic acid on bioreduction of facet-dependent hematite by Shewanella putrefaciens CN-32.
    Lu Y; Hu S; Zhang H; Song Q; Zhou W; Shen X; Xia D; Yang Y; Zhu H; Liu C
    Sci Total Environ; 2022 Nov; 849():157713. PubMed ID: 35914600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.
    Langley S; Igric P; Takahashi Y; Sakai Y; Fortin D; Hannington MD; Schwarz-Schampera U
    Geobiology; 2009 Jan; 7(1):35-49. PubMed ID: 19200145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of sediment components on the immobilization of Zn during microbial Fe-(hydr)oxide reduction.
    Coby AJ; Picardal FW
    Environ Sci Technol; 2006 Jun; 40(12):3813-8. PubMed ID: 16830547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200.
    Cooper DC; Picardal FW; Schimmelmann A; Coby AJ
    Appl Environ Microbiol; 2003 Jun; 69(6):3517-25. PubMed ID: 12788758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to crystalline Fe(III) oxides.
    Das A; Caccavo F
    Curr Microbiol; 2001 Mar; 42(3):151-4. PubMed ID: 11270646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.