These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 11722915)
21. Rewiring Lactococcus lactis for ethanol production. Solem C; Dehli T; Jensen PR Appl Environ Microbiol; 2013 Apr; 79(8):2512-8. PubMed ID: 23377945 [TBL] [Abstract][Full Text] [Related]
22. Engineered Kluyveromyces marxianus for pyruvate production at elevated temperature with simultaneous consumption of xylose and glucose. Zhang B; Zhu Y; Zhang J; Wang D; Sun L; Hong J Bioresour Technol; 2017 Jan; 224():553-562. PubMed ID: 27955868 [TBL] [Abstract][Full Text] [Related]
23. Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l-lactic acid production. Lee JW; In JH; Park JB; Shin J; Park JH; Sung BH; Sohn JH; Seo JH; Park JB; Kim SR; Kweon DH J Biotechnol; 2017 Jan; 241():81-86. PubMed ID: 27867078 [TBL] [Abstract][Full Text] [Related]
24. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977 [TBL] [Abstract][Full Text] [Related]
25. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995 [TBL] [Abstract][Full Text] [Related]
26. Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase. Wang Q; Ou MS; Kim Y; Ingram LO; Shanmugam KT Appl Environ Microbiol; 2010 Apr; 76(7):2107-14. PubMed ID: 20118372 [TBL] [Abstract][Full Text] [Related]
27. Pyruvate decarboxylase from Kluyveromyces lactis. An enzyme with an extraordinary substrate activation behaviour. Krieger F; Spinka M; Golbik R; Hübner G; König S Eur J Biochem; 2002 Jul; 269(13):3256-63. PubMed ID: 12084066 [TBL] [Abstract][Full Text] [Related]
28. Lactate dehydrogenase is the key enzyme for pneumococcal pyruvate metabolism and pneumococcal survival in blood. Gaspar P; Al-Bayati FA; Andrew PW; Neves AR; Yesilkaya H Infect Immun; 2014 Dec; 82(12):5099-109. PubMed ID: 25245810 [TBL] [Abstract][Full Text] [Related]
30. The las enzymes control pyruvate metabolism in Lactococcus lactis during growth on maltose. Solem C; Koebmann B; Yang F; Jensen PR J Bacteriol; 2007 Sep; 189(18):6727-30. PubMed ID: 17616595 [TBL] [Abstract][Full Text] [Related]
31. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity. Garrigues C; Goupil-Feuillerat N; Cocaign-Bousquet M; Renault P; Lindley ND; Loubiere P Metab Eng; 2001 Jul; 3(3):211-7. PubMed ID: 11461143 [TBL] [Abstract][Full Text] [Related]
32. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Ishida N; Saitoh S; Tokuhiro K; Nagamori E; Matsuyama T; Kitamoto K; Takahashi H Appl Environ Microbiol; 2005 Apr; 71(4):1964-70. PubMed ID: 15812027 [TBL] [Abstract][Full Text] [Related]
33. Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii. Osawa F; Fujii T; Nishida T; Tada N; Ohnishi T; Kobayashi O; Komeda T; Yoshida S Yeast; 2009 Sep; 26(9):485-96. PubMed ID: 19655300 [TBL] [Abstract][Full Text] [Related]
34. The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Diniz RH; Silveira WB; Fietto LG; Passos FM Antonie Van Leeuwenhoek; 2012 Mar; 101(3):541-50. PubMed ID: 22068918 [TBL] [Abstract][Full Text] [Related]
35. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. Skory CD J Ind Microbiol Biotechnol; 2003 Jan; 30(1):22-7. PubMed ID: 12545382 [TBL] [Abstract][Full Text] [Related]
36. The crystal structure of pyruvate decarboxylase from Kluyveromyces lactis. Implications for the substrate activation mechanism of this enzyme. Kutter S; Wille G; Relle S; Weiss MS; Hübner G; König S FEBS J; 2006 Sep; 273(18):4199-209. PubMed ID: 16939618 [TBL] [Abstract][Full Text] [Related]
37. Cloning and characterization of the lactate-specific inducible gene KlCYB2, encoding the cytochrome b(2) of Kluyveromyces lactis. Alberti A; Goffrini P; Ferrero I; Lodi T Yeast; 2000 May; 16(7):657-65. PubMed ID: 10806428 [TBL] [Abstract][Full Text] [Related]
38. RAG3 gene and transcriptional regulation of the pyruvate decarboxylase gene in Kluyveromyces lactis. Prior C; Tizzani L; Fukuhara H; Wésolowski-Louvel M Mol Microbiol; 1996 May; 20(4):765-72. PubMed ID: 8793873 [TBL] [Abstract][Full Text] [Related]
39. Direct fermentation of Jerusalem artichoke tuber powder for production of l-lactic acid and d-lactic acid by metabolically engineered Kluyveromyces marxianus. Bae JH; Kim HJ; Kim MJ; Sung BH; Jeon JH; Kim HS; Jin YS; Kweon DH; Sohn JH J Biotechnol; 2018 Jan; 266():27-33. PubMed ID: 29208409 [TBL] [Abstract][Full Text] [Related]
40. Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei. Viana R; Yebra MJ; Galán JL; Monedero V; Pérez-Martínez G Res Microbiol; 2005; 156(5-6):641-9. PubMed ID: 15882939 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]