These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 11722918)
1. Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1. Donzelli BG; Harman GE Appl Environ Microbiol; 2001 Dec; 67(12):5643-7. PubMed ID: 11722918 [TBL] [Abstract][Full Text] [Related]
2. Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Mach RL; Peterbauer CK; Payer K; Jaksits S; Woo SL; Zeilinger S; Kullnig CM; Lorito M; Kubicek CP Appl Environ Microbiol; 1999 May; 65(5):1858-63. PubMed ID: 10223970 [TBL] [Abstract][Full Text] [Related]
3. Regulation of three genes encoding cell-wall-degrading enzymes of Trichoderma aggressivum during interaction with Agaricus bisporus. Abubaker KS; Sjaarda C; Castle AJ Can J Microbiol; 2013 Jun; 59(6):417-24. PubMed ID: 23750957 [TBL] [Abstract][Full Text] [Related]
4. The beta-N-acetylglucosaminidases NAG1 and NAG2 are essential for growth of Trichoderma atroviride on chitin. López-Mondéjar R; Catalano V; Kubicek CP; Seidl V FEBS J; 2009 Sep; 276(18):5137-48. PubMed ID: 19674110 [TBL] [Abstract][Full Text] [Related]
5. Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride. Liu M; Sun ZX; Zhu J; Xu T; Harman GE; Lorito M J Zhejiang Univ Sci; 2004 Feb; 5(2):133-6. PubMed ID: 14674022 [TBL] [Abstract][Full Text] [Related]
6. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere. Mallikharjuna Rao KL; Siva Raju K; Ravisankar H Braz J Microbiol; 2016; 47(1):25-32. PubMed ID: 26887223 [TBL] [Abstract][Full Text] [Related]
7. The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Brunner K; Peterbauer CK; Mach RL; Lorito M; Zeilinger S; Kubicek CP Curr Genet; 2003 Jul; 43(4):289-95. PubMed ID: 12748812 [TBL] [Abstract][Full Text] [Related]
8. Mycotoxigenic Fusarium and deoxynivalenol production repress chitinase gene expression in the biocontrol agent Trichoderma atroviride P1. Lutz MP; Feichtinger G; Défago G; Duffy B Appl Environ Microbiol; 2003 Jun; 69(6):3077-84. PubMed ID: 12788701 [TBL] [Abstract][Full Text] [Related]
9. Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Carsolio C; Benhamou N; Haran S; Cortés C; Gutiérrez A; Chet I; Herrera-Estrella A Appl Environ Microbiol; 1999 Mar; 65(3):929-35. PubMed ID: 10049844 [TBL] [Abstract][Full Text] [Related]
10. Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. de las Mercedes Dana M; Limón MC; Mejías R; Mach RL; Benítez T; Pintor-Toro JA; Kubicek CP Curr Genet; 2001 Jan; 38(6):335-42. PubMed ID: 11270576 [TBL] [Abstract][Full Text] [Related]
11. Regulation of 36-kDa beta-1,3-glucanase synthesis in Trichoderma harzianum. Noronha EF; Kipnis A; Junqueira-Kipnis AP; Ulhoa CJ FEMS Microbiol Lett; 2000 Jul; 188(1):19-22. PubMed ID: 10867228 [TBL] [Abstract][Full Text] [Related]
12. Protein engineering of chit42 towards improvement of chitinase and antifungal activities. Kowsari M; Motallebi M; Zamani M Curr Microbiol; 2014 Apr; 68(4):495-502. PubMed ID: 24322404 [TBL] [Abstract][Full Text] [Related]
13. Multiple components and induction mechanism of the chitinolytic system of the hyperthermophilic archaeon Thermococcus chitonophagus. Andronopoulou E; Vorgias CE Appl Microbiol Biotechnol; 2004 Nov; 65(6):694-702. PubMed ID: 15322771 [TBL] [Abstract][Full Text] [Related]
14. Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea. Wu Q; Bai L; Liu W; Li Y; Lu C; Li Y; Fu K; Yu C; Chen J J Microbiol; 2013 Apr; 51(2):166-73. PubMed ID: 23625216 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of three chitinases from Trichoderma harzianum. de la Cruz J; Hidalgo-Gallego A; Lora JM; Benitez T; Pintor-Toro JA; Llobell A Eur J Biochem; 1992 Jun; 206(3):859-67. PubMed ID: 1606968 [TBL] [Abstract][Full Text] [Related]
17. Designing a new chitinase with more chitin binding and antifungal activity. Matroodi S; Motallebi M; Zamani M; Moradyar M World J Microbiol Biotechnol; 2013 Aug; 29(8):1517-23. PubMed ID: 23515962 [TBL] [Abstract][Full Text] [Related]
18. Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray. Samolski I; de Luis A; Vizcaíno JA; Monte E; Suárez MB BMC Microbiol; 2009 Oct; 9():217. PubMed ID: 19825185 [TBL] [Abstract][Full Text] [Related]
19. Cloning, sequence and structure of a gene encoding an antifungal glucan 1,3-beta-glucosidase from Trichoderma atroviride (T. harzianum). Donzelli BG; Lorito M; Scala F; Harman GE Gene; 2001 Oct; 277(1-2):199-208. PubMed ID: 11602357 [TBL] [Abstract][Full Text] [Related]
20. Self versus non-self: fungal cell wall degradation in Trichoderma. Gruber S; Seidl-Seiboth V Microbiology (Reading); 2012 Jan; 158(Pt 1):26-34. PubMed ID: 21873410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]