BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 11723383)

  • 1. Is robot-aided sensorimotor training in stroke rehabilitation a realistic option?
    Volpe BT; Krebs HI; Hogan N
    Curr Opin Neurol; 2001 Dec; 14(6):745-52. PubMed ID: 11723383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotics in the rehabilitation treatment of patients with stroke.
    Volpe BT; Ferraro M; Krebs HI; Hogan N
    Curr Atheroscler Rep; 2002 Jul; 4(4):270-6. PubMed ID: 12052277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation.
    Sale P; Infarinato F; Del Percio C; Lizio R; Babiloni C; Foti C; Franceschini M
    Int J Rehabil Res; 2015 Dec; 38(4):294-305. PubMed ID: 26317486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation.
    Volpe BT; Krebs HI; Hogan N; Edelstein OTR L; Diels C; Aisen M
    Neurology; 2000 May; 54(10):1938-44. PubMed ID: 10822433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and feasibility study of a sensory-enhanced robot-aided motor training in stroke rehabilitation.
    Liu W; Mukherjee M; Tsaur Y; Kim SH; Liu H; Natarajan P; Agah A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5965-8. PubMed ID: 19964884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotics and other devices in the treatment of patients recovering from stroke.
    Volpe BT; Ferraro M; Lynch D; Christos P; Krol J; Trudell C; Krebs HI; Hogan N
    Curr Neurol Neurosci Rep; 2005 Nov; 5(6):465-70. PubMed ID: 16263058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke.
    Volpe BT; Lynch D; Rykman-Berland A; Ferraro M; Galgano M; Hogan N; Krebs HI
    Neurorehabil Neural Repair; 2008; 22(3):305-10. PubMed ID: 18184932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke.
    Li L; Ding L; Chen N; Mao Y; Huang D; Li L
    Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An intention driven hand functions task training robotic system.
    Tong KY; Ho SK; Pang PK; Hu XL; Tam WK; Fung KL; Wei XJ; Chen PN; Chen M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3406-9. PubMed ID: 21097247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mobile robot therapist for under-supervised training with robot/computer assisted motivating systems.
    Shakya Y; Johnson MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4511-4. PubMed ID: 19163718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of a robotic walking simulator for gait rehabilitation].
    Schmidt H; Sorowka D; Hesse S; Bernhardt R
    Biomed Tech (Berl); 2003 Oct; 48(10):281-6. PubMed ID: 14606269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: a retrospective study.
    Colombo R; Pisano F; Delconte C; Mazzone A; Grioni G; Castagna M; Bazzini G; Imarisio C; Maggioni G; Pistarini C
    Eur J Phys Rehabil Med; 2017 Apr; 53(2):240-248. PubMed ID: 27676203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic technologies and rehabilitation: new tools for upper-limb therapy and assessment in chronic stroke.
    Zollo L; Gallotta E; Guglielmelli E; Sterzi S
    Eur J Phys Rehabil Med; 2011 Jun; 47(2):223-36. PubMed ID: 21445028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial.
    Bergmann J; Krewer C; Bauer P; Koenig A; Riener R; Müller F
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):397-407. PubMed ID: 29265791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process.
    Duret C; Courtial O; Grosmaire AG; Hutin E
    Biomed Res Int; 2015; 2015():482389. PubMed ID: 25821804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.