These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11723929)

  • 1. Simulating canopy stomatal conductance of winter wheat and its distribution using remote sensing information.
    Zhang JH; Fu CB; Hiroshi K
    J Environ Sci (China); 2001 Oct; 13(4):439-43. PubMed ID: 11723929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution spatial analysis of stomatal ozone uptake in arable crops and pastures.
    Nussbaum S; Remund J; Rihm B; Mieglitz K; Gurtz J; Fuhrer J
    Environ Int; 2003 Jun; 29(2-3):385-92. PubMed ID: 12676231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Canopy-scale relationships between stomatal conductance and photosynthesis in irrigated rice.
    Ono K; Maruyama A; Kuwagata T; Mano M; Takimoto T; Hayashi K; Hasegawa T; Miyata A
    Glob Chang Biol; 2013 Jul; 19(7):2209-20. PubMed ID: 23504912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations?
    Wheeler RM; Mackowiak CL; Yorio NC; Sager JC
    Ann Bot; 1999 Mar; 83(3):243-51. PubMed ID: 11541549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diurnal, seasonal and interannual variability of carbon isotope discrimination at the canopy level in response to environmental factors in a boreal forest ecosystem.
    Chen B; Chen JM
    Plant Cell Environ; 2007 Oct; 30(10):1223-39. PubMed ID: 17727414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of climate change for the stomatal flux of ozone: a case study for winter wheat.
    Harmens H; Mills G; Emberson LD; Ashmore MR
    Environ Pollut; 2007 Apr; 146(3):763-70. PubMed ID: 16824657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling environmental controls on ecosystem photosynthesis and the carbon isotope composition of ecosystem-respired CO2 in a coastal Douglas-fir forest.
    Cai T; Flanagan LB; Jassal RS; Black TA
    Plant Cell Environ; 2008 Apr; 31(4):435-53. PubMed ID: 18182019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Simulating photosynthesis and evapotranspiration of winter wheat with a SVAT model].
    Mo X; Liu S; Lin Z
    Ying Yong Sheng Tai Xue Bao; 2002 Nov; 13(11):1394-8. PubMed ID: 12624991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Midday depression of leaf CO2 exchange within the crown of Dipterocarpus sublamellatus in a lowland dipterocarp forest in Peninsular Malaysia.
    Kosugi Y; Takanashi S; Matsuo N; Nik AR
    Tree Physiol; 2009 Apr; 29(4):505-15. PubMed ID: 19203974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting stomatal uptake of ozone by different canopies and a comparison between dose and exposure.
    Zhang L; Vet R; Brook JR; Legge AH
    Sci Total Environ; 2006 Oct; 370(1):117-32. PubMed ID: 16846632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characteristics and simulation of heat and CO2 fluxes over a typical cropland during the winter wheat growing in the North China Plain].
    Yuan ZJ; Shen YJ; Chu YM; Qi YQ
    Huan Jing Ke Xue; 2010 Jan; 31(1):41-8. PubMed ID: 20329514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling stomatal ozone flux and deposition to grassland communities across Europe.
    Ashmore MR; Büker P; Emberson LD; Terry AC; Toet S
    Environ Pollut; 2007 Apr; 146(3):659-70. PubMed ID: 16996181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Inversion of winter wheat foliage vertical distribution based on canopy reflected spectrum by partial least squares regression method].
    Wang JH; Huang WJ; Lao CL; Zhang LD; Luo CB; Wang T; Liu LY; Song XY; Ma ZH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1319-22. PubMed ID: 17944404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Characteristics of canopy stomatal conductance of Platycladus orientalis and its responses to environmental factors in the mountainous area of North China].
    Liu WN; Jia JB; Yu XX; Jia GD; Hou GR
    Ying Yong Sheng Tai Xue Bao; 2017 Oct; 28(10):3217-3226. PubMed ID: 29692139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling above-canopy CO2 flux and evapotranspiration in wheat.
    Vaughan PJ; Suarez DL
    Environ Pollut; 2002; 116 Suppl 1():S37-44. PubMed ID: 11833916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Influencing Mechanism and Spatio-temporal Pattern of Stomatal Ozone Flux of Winter Wheat Under Ozone Pollution].
    Zhao H; Zheng YF; Cao JC; Xu JX; Huang JQ; Yuan Y
    Huan Jing Ke Xue; 2017 Jan; 38(1):412-422. PubMed ID: 29965074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A test of the optimality approach to modelling canopy properties and CO2 uptake by natural vegetation.
    Schymanski SJ; Roderick ML; Sivapalan M; Hutley LB; Beringer J
    Plant Cell Environ; 2007 Dec; 30(12):1586-98. PubMed ID: 17927696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects.
    Pincebourde S; Sinoquet H; Combes D; Casas J
    J Anim Ecol; 2007 May; 76(3):424-38. PubMed ID: 17439460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient retrieval of vegetation leaf area index and canopy clumping factor from satellite data to support pollutant deposition assessments.
    Nikolov N; Zeller K
    Environ Pollut; 2006 Jun; 141(3):539-49. PubMed ID: 16343718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bidirectional ammonia exchange above a mixed coniferous forest.
    Neirynck J; Ceulemans R
    Environ Pollut; 2008 Aug; 154(3):424-38. PubMed ID: 18258346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.