BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11724563)

  • 41. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cores and pH-dependent dynamics of ferredoxin-NADP+ reductase revealed by hydrogen/deuterium exchange.
    Lee YH; Tamura K; Maeda M; Hoshino M; Sakurai K; Takahashi S; Ikegami T; Hase T; Goto Y
    J Biol Chem; 2007 Feb; 282(8):5959-67. PubMed ID: 17192259
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystal structure of a ferredoxin reductase for the CYP199A2 system from Rhodopseudomonas palustris.
    Xu F; Bell SG; Peng Y; Johnson EO; Bartlam M; Rao Z; Wong LL
    Proteins; 2009 Dec; 77(4):867-80. PubMed ID: 19626710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Structure of the electron transfer complex between plant type ferredoxin and ferredoxin dependent assimilatory enzymes].
    Kurisu G; Kusunoki M; Kimata-Ariga Y; Hase T
    Tanpakushitsu Kakusan Koso; 2001 Aug; 46(11 Suppl):1661-7. PubMed ID: 11579563
    [No Abstract]   [Full Text] [Related]  

  • 45. The C-terminal extension of bacterial flavodoxin-reductases: involvement in the hydride transfer mechanism from the coenzyme.
    Bortolotti A; Sánchez-Azqueta A; Maya CM; Velázquez-Campoy A; Hermoso JA; Medina M; Cortez N
    Biochim Biophys Acta; 2014 Jan; 1837(1):33-43. PubMed ID: 24016470
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ferredoxin-NADP+ reductase. Kinetics of electron transfer, transient intermediates, and catalytic activities studied by flash-absorption spectroscopy with isolated photosystem I and ferredoxin.
    Cassan N; Lagoutte B; Sétif P
    J Biol Chem; 2005 Jul; 280(28):25960-72. PubMed ID: 15894798
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structure of the FAD-containing fragment of corn nitrate reductase at 2.5 A resolution: relationship to other flavoprotein reductases.
    Lu G; Campbell WH; Schneider G; Lindqvist Y
    Structure; 1994 Sep; 2(9):809-21. PubMed ID: 7812715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A productive NADP+ binding mode of ferredoxin-NADP + reductase revealed by protein engineering and crystallographic studies.
    Deng Z; Aliverti A; Zanetti G; Arakaki AK; Ottado J; Orellano EG; Calcaterra NB; Ceccarelli EA; Carrillo N; Karplus PA
    Nat Struct Biol; 1999 Sep; 6(9):847-53. PubMed ID: 10467097
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The ferredoxin-NADP(H) reductase from Rhodobacter capsulatus: molecular structure and catalytic mechanism.
    Nogués I; Pérez-Dorado I; Frago S; Bittel C; Mayhew SG; Gómez-Moreno C; Hermoso JA; Medina M; Cortez N; Carrillo N
    Biochemistry; 2005 Sep; 44(35):11730-40. PubMed ID: 16128574
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution.
    Ingelman M; Bianchi V; Eklund H
    J Mol Biol; 1997 Apr; 268(1):147-57. PubMed ID: 9149148
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin-NADP+ reductase complexed with NADP+.
    Hermoso JA; Mayoral T; Faro M; Gómez-Moreno C; Sanz-Aparicio J; Medina M
    J Mol Biol; 2002 Jun; 319(5):1133-42. PubMed ID: 12079352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crystal structure of the FAD-containing ferredoxin-NADP+ reductase from the plant pathogen Xanthomonas axonopodis pv. citri.
    Tondo ML; Hurtado-Guerrero R; Ceccarelli EA; Medina M; Orellano EG; Martínez-Júlvez M
    Biomed Res Int; 2013; 2013():906572. PubMed ID: 23984418
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin.
    Vollmer M; Thomsen N; Wiek S; Seeber F
    J Biol Chem; 2001 Feb; 276(8):5483-90. PubMed ID: 11056177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proximal FAD histidine residue influences interflavin electron transfer in cytochrome P450 reductase and methionine synthase reductase.
    Meints CE; Parke SM; Wolthers KR
    Arch Biochem Biophys; 2014 Apr; 547():18-26. PubMed ID: 24589657
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzymatic oxidation of NADP+ to its 4-oxo derivative is a side-reaction displayed only by the adrenodoxin reductase type of ferredoxin-NADP+ reductases.
    de Rosa M; Pennati A; Pandini V; Monzani E; Zanetti G; Aliverti A
    FEBS J; 2007 Aug; 274(15):3998-4007. PubMed ID: 17635583
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A nitrate-inducible ferredoxin in maize roots. Genomic organization and differential expression of two nonphotosynthetic ferredoxin isoproteins.
    Matsumura T; Sakakibara H; Nakano R; Kimata Y; Sugiyama T; Hase T
    Plant Physiol; 1997 Jun; 114(2):653-60. PubMed ID: 9193097
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Refined crystal structure of spinach ferredoxin reductase at 1.7 A resolution: oxidized, reduced and 2'-phospho-5'-AMP bound states.
    Bruns CM; Karplus PA
    J Mol Biol; 1995 Mar; 247(1):125-45. PubMed ID: 7897656
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of the N- and C-terminal substrate binding segments of ferredoxin-NADP+ reductase by NMR.
    Maeda M; Lee YH; Ikegami T; Tamura K; Hoshino M; Yamazaki T; Nakayama M; Hase T; Goto Y
    Biochemistry; 2005 Aug; 44(31):10644-53. PubMed ID: 16060673
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Towards the competent conformation for catalysis in the ferredoxin-NADP
    Pérez-Amigot D; Taleb V; Boneta S; Anoz-Carbonell E; Sebastián M; Velázquez-Campoy A; Polo V; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta Bioenerg; 2019 Oct; 1860(10):148058. PubMed ID: 31394095
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Root-type ferredoxin-NADP
    Grabsztunowicz M; Rantala M; Ivanauskaite A; Blomster T; Koskela MM; Vuorinen K; Tyystjärvi E; Burow M; Overmyer K; Mähönen AP; Mulo P
    Plant Cell Environ; 2021 Feb; 44(2):548-558. PubMed ID: 33131061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.