These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11724566)

  • 1. Functional evaluation of serine/threonine residues in the P-Loop of Rhodobacter sphaeroides phosphoribulokinase.
    Runquist JA; Ríos SE; Vinarov DA; Miziorko HM
    Biochemistry; 2001 Dec; 40(48):14530-7. PubMed ID: 11724566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodobacter sphaeroides phosphoribulokinase: identification of lysine-165 as a catalytic residue and evaluation of the contributions of invariant basic amino acids to ribulose 5-phosphate binding.
    Runquist JA; Harrison DH; Miziorko HM
    Biochemistry; 1999 Oct; 38(42):13999-4005. PubMed ID: 10529247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional contribution of a conserved, mobile loop histidine of phosphoribulokinase.
    Runquist JA; Miziorko HM
    Protein Sci; 2006 Apr; 15(4):837-42. PubMed ID: 16522805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodobacter sphaeroides phosphoribulokinase: binary and ternary complexes with nucleotide substrate analogs and effectors.
    Runquist JA; Narasimhan C; Wolff CE; Koteiche HA; Miziorko HM
    Biochemistry; 1996 Nov; 35(47):15049-56. PubMed ID: 8942671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utility of a novel spin-labeled nucleotide in investigation of the substrate and effector sites of phosphoribulokinase.
    Koteiche HA; Narasimhan C; Runquist JA; Miziorko HM
    Biochemistry; 1995 Nov; 34(46):15068-74. PubMed ID: 7578119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence supporting catalytic roles for aspartate residues in phosphoribulokinase.
    Charlier HA; Runquist JA; Miziorko HM
    Biochemistry; 1994 Aug; 33(31):9343-50. PubMed ID: 7914091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anionic substitutes for catalytic aspartic acids in phosphoribulokinase.
    Runquist JA; Miziorko HM
    Arch Biochem Biophys; 2002 Sep; 405(2):178-84. PubMed ID: 12220530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of invariant serine/threonine residues in mevalonate kinase. Tests of the functional significance of a proposed substrate binding motif and a site implicated in human inherited disease.
    Cho YK; Ríos SE; Kim JJ; Miziorko HM
    J Biol Chem; 2001 Apr; 276(16):12573-8. PubMed ID: 11278915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the allosteric regulatory site in bacterial phosphoribulokinase.
    Kung G; Runquist JA; Miziorko HM; Harrison DH
    Biochemistry; 1999 Nov; 38(46):15157-65. PubMed ID: 10563798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular approaches to probe differential NADH activation of phosphoribulokinase isozymes from Rhodobacter sphaeroides.
    Novak JS; Tabita FR
    Arch Biochem Biophys; 1999 Mar; 363(2):273-82. PubMed ID: 10068449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional evaluation of invariant arginines situated in the mobile lid domain of phosphoribulokinase.
    Runquist JA; Harrison DH; Miziorko HM
    Biochemistry; 1998 Feb; 37(5):1221-6. PubMed ID: 9477947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the phosphoribulokinase sugar phosphate binding domain.
    Sandbaken MG; Runquist JA; Barbieri JT; Miziorko HM
    Biochemistry; 1992 Apr; 31(14):3715-9. PubMed ID: 1314650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoribulokinase: current perspectives on the structure/function basis for regulation and catalysis.
    Miziorko HM
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():95-127. PubMed ID: 10800594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the functional contributions of invariant serine residues in yeast mevalonate diphosphate decarboxylase.
    Krepkiy DV; Miziorko HM
    Biochemistry; 2005 Feb; 44(7):2671-7. PubMed ID: 15709780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
    Yang G; Sandalova T; Lohman K; Lindqvist Y; Rendina AR
    Biochemistry; 1997 Apr; 36(16):4751-60. PubMed ID: 9125495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical mechanism of the fructose-6-phosphate,2-kinase reaction from the pH dependence of kinetic parameters of site-directed mutants of active site basic residues.
    Mizuguchi H; Cook PF; Hasemann CA; Uyeda K
    Biochemistry; 1997 Jul; 36(29):8775-84. PubMed ID: 9220964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+)-binding site in Rhodobacter sphaeroides cytochrome C oxidase.
    Lee A; Kirichenko A; Vygodina T; Siletsky SA; Das TK; Rousseau DL; Gennis R; Konstantinov AA
    Biochemistry; 2002 Jul; 41(28):8886-98. PubMed ID: 12102631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of phosphoribulokinase and ribulose bisphosphate carboxylase/oxygenase genes in Rhodopseudomonas (Rhodobacter) sphaeroides.
    Gibson JL; Tabita FR
    J Bacteriol; 1987 Aug; 169(8):3685-90. PubMed ID: 3038848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic, stereochemical, and structural effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase.
    Harris TK; Czerwinski RM; Johnson WH; Legler PM; Abeygunawardana C; Massiah MA; Stivers JT; Whitman CP; Mildvan AS
    Biochemistry; 1999 Sep; 38(38):12343-57. PubMed ID: 10493802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.