BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 11724581)

  • 1. Phosphorylation and inactivation of yeast 6-phosphofructo-2-kinase contribute to the regulation of glycolysis under hypotonic stress.
    Dihazi H; Kessler R; Eschrich K
    Biochemistry; 2001 Dec; 40(48):14669-78. PubMed ID: 11724581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-induced stimulation of the Ras-cAMP pathway in yeast leads to multiple phosphorylations and activation of 6-phosphofructo-2-kinase.
    Dihazi H; Kessler R; Eschrich K
    Biochemistry; 2003 May; 42(20):6275-82. PubMed ID: 12755632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress.
    Dihazi H; Kessler R; Eschrich K
    J Biol Chem; 2004 Jun; 279(23):23961-8. PubMed ID: 15037628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ser644 is important for catalytic activity but is not involved in cAMP-dependent phosphorylation of yeast 6-phosphofructo-2-kinase.
    Kessler R; Eschrich K
    FEBS Lett; 1996 Oct; 395(2-3):225-7. PubMed ID: 8898101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine 3 acetylation regulates the phosphorylation of yeast 6-phosphofructo-2-kinase under hypo-osmotic stress.
    Dihazi H; Kessler R; Müller GA; Eschrich K
    Biol Chem; 2005 Sep; 386(9):895-900. PubMed ID: 16164414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation of monofunctional 6-phosphofructo-2-kinase in yeast to bifunctional 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase.
    Kretschmer M; Langer C; Prinz W
    Biochemistry; 1993 Oct; 32(41):11143-8. PubMed ID: 8218176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A two-hybrid system analysis shows interactions between 6-phosphofructo-1-kinase and 6-phosphofructo-2-kinase but not between other glycolytic enzymes of the yeast Saccharomyces cerevisiae.
    Müller S; Boles E; Zimmermann FK
    Eur J Biochem; 1996 Mar; 236(2):626-31. PubMed ID: 8612638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2,6-bisphosphate in the regulation of carbon fluxes in yeast cells.
    Müller S; Zimmermann FK; Boles E
    Microbiology (Reading); 1997 Sep; 143 ( Pt 9)():3055-3061. PubMed ID: 9308187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylated sites of M(r) 25,000 protein, a putative protein phosphatase 2A modulator, and phosphorylation of the synthetic peptide containing these sites by protein kinase C.
    Hashimoto E; Kobayashi N; Kubota N; Tanaka Y; Yamamura H
    J Biochem; 1996 Apr; 119(4):626-32. PubMed ID: 8743561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast 6-phosphofructo-2-kinase: sequence and mutant.
    Kretschmer M; Fraenkel DG
    Biochemistry; 1991 Nov; 30(44):10663-72. PubMed ID: 1657152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinase activity of human brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is regulated via inhibition by phosphoenolpyruvate.
    Manes NP; El-Maghrabi MR
    Arch Biochem Biophys; 2005 Jun; 438(2):125-36. PubMed ID: 15896703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue.
    Kassis S; Melhuish T; Annan RS; Chen SL; Lee JC; Livi GP; Creasy CL
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):263-72. PubMed ID: 10816418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo phosphorylation site of hexokinase 2 in Saccharomyces cerevisiae.
    Kriegel TM; Rush J; Vojtek AB; Clifton D; Fraenkel DG
    Biochemistry; 1994 Jan; 33(1):148-52. PubMed ID: 8286332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of the chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase sequence His444-Arg-Glu-Arg in modulation of the bisphosphatase activity by its kinase domain.
    Zhu Z; Ling S; Yang QH; Li L
    Biochem J; 2001 Jul; 357(Pt 2):513-20. PubMed ID: 11439102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The protein phosphatases involved in cellular regulation. Glycolysis, gluconeogenesis and aromatic amino acid breakdown in rat liver.
    Pelech S; Cohen P; Fisher MJ; Pogson CI; El-Maghrabi MR; Pilkis SJ
    Eur J Biochem; 1984 Nov; 145(1):39-49. PubMed ID: 6092081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity of the phosphorylated fructose-1,6-bisphosphatase dephosphorylating protein phosphatase from Saccharomyces cerevisiae.
    Manhart A; Holzer H
    Yeast; 1988 Sep; 4(3):227-32. PubMed ID: 2849261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae.
    Davies SE; Brindle KM
    Biochemistry; 1992 May; 31(19):4729-35. PubMed ID: 1533788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fructose-2,6-bisphosphatase and 6-phosphofructo-2-kinase are separable in yeast.
    Kretschmer M; Schellenberger W; Otto A; Kessler R; Hofmann E
    Biochem J; 1987 Sep; 246(3):755-9. PubMed ID: 2825652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of in vitro nucleic acid strand annealing activity of heterogeneous nuclear ribonucleoprotein protein A1 by reversible phosphorylation.
    Idriss H; Kumar A; Casas-Finet JR; Guo H; Damuni Z; Wilson SH
    Biochemistry; 1994 Sep; 33(37):11382-90. PubMed ID: 7727389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of Mg(2+)-dependent protein phosphatase alpha (type 2C alpha) by casein kinase II.
    Kobayashi T; Kanno S; Terasawa T; Murakami T; Ohnishi M; Ohtsuki K; Hiraga A; Tamura S
    Biochem Biophys Res Commun; 1993 Aug; 195(1):484-9. PubMed ID: 8395836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.