BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 11724588)

  • 1. Intermediate Q from soluble methane monooxygenase hydroxylates the mechanistic substrate probe norcarane: evidence for a stepwise reaction.
    Brazeau BJ; Austin RN; Tarr C; Groves JT; Lipscomb JD
    J Am Chem Soc; 2001 Dec; 123(48):11831-7. PubMed ID: 11724588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of norcarane as a probe for radicals in cytochome p450- and soluble methane monooxygenase-catalyzed hydroxylation reactions.
    Newcomb M; Shen R; Lu Y; Coon MJ; Hollenberg PF; Kopp DA; Lippard SJ
    J Am Chem Soc; 2002 Jun; 124(24):6879-86. PubMed ID: 12059209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the C-terminal region of the B component of Methylosinus trichosporium OB3b methane monooxygenase in the regulation of oxygen activation.
    Zhang J; Lipscomb JD
    Biochemistry; 2006 Feb; 45(5):1459-69. PubMed ID: 16445288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of methane monooxygenase catalysis based on size exclusion and quantum tunneling.
    Zheng H; Lipscomb JD
    Biochemistry; 2006 Feb; 45(6):1685-92. PubMed ID: 16460015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remarkable aliphatic hydroxylation by the diiron enzyme toluene 4-monooxygenase in reactions with radical or cation diagnostic probes norcarane, 1,1-dimethylcyclopropane, and 1,1-diethylcyclopropane.
    Moe LA; Hu Z; Deng D; Austin RN; Groves JT; Fox BG
    Biochemistry; 2004 Dec; 43(50):15688-701. PubMed ID: 15595825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desaturase reactions complicate the use of norcarane as a mechanistic probe. Unraveling the mixture of twenty-plus products formed in enzyme-catalyzed oxidations of norcarane.
    Newcomb M; Chandrasena RE; Lansakara-P DS; Kim HY; Lippard SJ; Beauvais LG; Murray LJ; Izzo V; Hollenberg PF; Coon MJ
    J Org Chem; 2007 Feb; 72(4):1121-7. PubMed ID: 17288366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights into C-H activation from radical clock chemistry: oxidation of substituted methylcyclopropanes catalyzed by soluble methane monooxygenase from Methylosinus trichosporium OB3b.
    Jin Y; Lipscomb JD
    Biochim Biophys Acta; 2000 Nov; 1543(1):47-59. PubMed ID: 11087940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation.
    Sullivan JP; Dickinson D; Chase HA
    Crit Rev Microbiol; 1998; 24(4):335-73. PubMed ID: 9887367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediate P* from soluble methane monooxygenase contains a diferrous cluster.
    Banerjee R; Meier KK; Münck E; Lipscomb JD
    Biochemistry; 2013 Jun; 52(25):4331-42. PubMed ID: 23718184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and activation thermodynamics of methane monooxygenase compound Q formation and reaction with substrates.
    Brazeau BJ; Lipscomb JD
    Biochemistry; 2000 Nov; 39(44):13503-15. PubMed ID: 11063587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A non-radical mechanism for methane hydroxylation at the diiron active site of soluble methane monooxygenase.
    Yoshizawa K; Yumura T
    Chemistry; 2003 May; 9(10):2347-58. PubMed ID: 12772310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large kinetic isotope effects in methane oxidation catalyzed by methane monooxygenase: evidence for C-H bond cleavage in a reaction cycle intermediate.
    Nesheim JC; Lipscomb JD
    Biochemistry; 1996 Aug; 35(31):10240-7. PubMed ID: 8756490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the mechanism of C-H activation: oxidation of methylcubane by soluble methane monooxygenase from Methylosinus trichosporium OB3b.
    Jin Y; Lipscomb JD
    Biochemistry; 1999 May; 38(19):6178-86. PubMed ID: 10320346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient intermediates of the methane monooxygenase catalytic cycle.
    Lee SK; Nesheim JC; Lipscomb JD
    J Biol Chem; 1993 Oct; 268(29):21569-77. PubMed ID: 8408008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT study of the mechanism for methane hydroxylation by soluble methane monooxygenase (sMMO): effects of oxidation state, spin state, and coordination number.
    Huang SP; Shiota Y; Yoshizawa K
    Dalton Trans; 2013 Jan; 42(4):1011-23. PubMed ID: 23108153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methane monooxygenase component B mutants alter the kinetics of steps throughout the catalytic cycle.
    Wallar BJ; Lipscomb JD
    Biochemistry; 2001 Feb; 40(7):2220-33. PubMed ID: 11329291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen activation catalyzed by methane monooxygenase hydroxylase component: proton delivery during the O-O bond cleavage steps.
    Lee SK; Lipscomb JD
    Biochemistry; 1999 Apr; 38(14):4423-32. PubMed ID: 10194363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desaturation reactions catalyzed by soluble methane monooxygenase.
    Jin Y; Lipscomb JD
    J Biol Inorg Chem; 2001 Sep; 6(7):717-25. PubMed ID: 11681705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble Methane Monooxygenase Component Interactions Monitored by
    Jones JC; Banerjee R; Shi K; Semonis MM; Aihara H; Pomerantz WCK; Lipscomb JD
    Biochemistry; 2021 Jun; 60(25):1995-2010. PubMed ID: 34100595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rapid fluorescence-based assay for detecting soluble methane monooxygenase.
    Miller AR; Keener WK; Watwood ME; Roberto FF
    Appl Microbiol Biotechnol; 2002 Feb; 58(2):183-8. PubMed ID: 11876411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.