These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 11724593)
1. Highly alpha- and beta-selective radical C-glycosylation reactions using a controlling anomeric effect based on the conformational restriction strategy. A study on the conformation-anomeric effect-stereoselectivity relationship in anomeric radical reactions. Abe H; Shuto S; Matsuda A J Am Chem Soc; 2001 Dec; 123(48):11870-82. PubMed ID: 11724593 [TBL] [Abstract][Full Text] [Related]
2. A study on the conformation-anomeric effect-stereoselectivity relationship in anomeric radical reactions, using conformationally restricted glucose derivatives as substrates. Abe H; Terauchi M; Matsuda A; Shuto S J Org Chem; 2003 Sep; 68(19):7439-47. PubMed ID: 12968898 [TBL] [Abstract][Full Text] [Related]
3. An efficient synthesis of beta-C-glycosides based on the conformational restriction strategy: Lewis acid promoted silane reduction of the anomeric position with complete stereoselectivity. Terauchi M; Abe H; Matsuda A; Shuto S Org Lett; 2004 Oct; 6(21):3751-4. PubMed ID: 15469340 [TBL] [Abstract][Full Text] [Related]
4. SnCl(4)- and TiCl(4)-catalyzed anomerization of acylated O- and S-glycosides: analysis of factors that lead to higher α:β anomer ratios and reaction rates. Pilgrim W; Murphy PV J Org Chem; 2010 Oct; 75(20):6747-55. PubMed ID: 20836488 [TBL] [Abstract][Full Text] [Related]
5. On the generalized valence bond description of the anomeric and exo-anomeric effects: an ab initio conformational study of 2-methoxytetrahydropyran. Bitzer RS; Barbosa AG; da Silva CO; Nascimento MA Carbohydr Res; 2005 Sep; 340(13):2171-84. PubMed ID: 16054606 [TBL] [Abstract][Full Text] [Related]
6. Control of alpha/beta stereoselectivity in Lewis acid promoted C-glycosidations using a controlling anomeric effect based on the conformational restriction strategy. Tamura S; Abe H; Matsuda A; Shuto S Angew Chem Int Ed Engl; 2003 Mar; 42(9):1021-3. PubMed ID: 12616555 [No Abstract] [Full Text] [Related]
7. Probing the influence of protecting groups on the anomeric equilibrium in sialic acid glycosides with the persistent radical effect. Kancharla PK; Kato T; Crich D J Am Chem Soc; 2014 Apr; 136(14):5472-80. PubMed ID: 24606062 [TBL] [Abstract][Full Text] [Related]
8. Complications of modeling glycosylation reactions: can the anomeric conformation of a donor determine the glycopyranosyl oxacarbenium ring conformation? Whitfield DM Carbohydr Res; 2012 Jul; 356():191-5. PubMed ID: 22542073 [TBL] [Abstract][Full Text] [Related]
10. Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides. Zhu F; Rodriguez J; Yang T; Kevlishvili I; Miller E; Yi D; O'Neill S; Rourke MJ; Liu P; Walczak MA J Am Chem Soc; 2017 Dec; 139(49):17908-17922. PubMed ID: 29148749 [TBL] [Abstract][Full Text] [Related]
11. Stereocontrolled Synthesis of α-Xylofuranosides Using a Conformationally Restricted Donor. Zhang L; Shen K; Taha HA; Lowary TL J Org Chem; 2018 Aug; 83(15):7659-7671. PubMed ID: 29895148 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of postulated molecular probes: stereoselective free-radical-mediated C-glycosylation in tandem with hydrogen transfer. Guindon Y; Bencheqroun M; Bouzide A J Am Chem Soc; 2005 Jan; 127(2):554-8. PubMed ID: 15643879 [TBL] [Abstract][Full Text] [Related]
13. Interplay of Protecting Groups and Side Chain Conformation in Glycopyranosides. Modulation of the Influence of Remote Substituents on Glycosylation? Dharuman S; Amarasekara H; Crich D J Org Chem; 2018 Sep; 83(17):10334-10351. PubMed ID: 30063354 [TBL] [Abstract][Full Text] [Related]
14. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation. Gervay-Hague J Acc Chem Res; 2016 Jan; 49(1):35-47. PubMed ID: 26524481 [TBL] [Abstract][Full Text] [Related]
15. Can the stereochemical outcome of glycosylation reactions be controlled by the conformational preferences of the glycosyl donor? Nukada T; Bérces A; Whitfield DM Carbohydr Res; 2002 Apr; 337(8):765-74. PubMed ID: 11950473 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of a chemical glycosylation reaction. Crich D Acc Chem Res; 2010 Aug; 43(8):1144-53. PubMed ID: 20496888 [TBL] [Abstract][Full Text] [Related]
17. Stereoselective C-glycosylation reactions of pyranoses: the conformational preference and reactions of the mannosyl cation. Lucero CG; Woerpel KA J Org Chem; 2006 Mar; 71(7):2641-7. PubMed ID: 16555815 [TBL] [Abstract][Full Text] [Related]
18. The impact of oxacarbenium ion conformers on the stereochemical outcome of glycosylations. Walvoort MT; Dinkelaar J; van den Bos LJ; Lodder G; Overkleeft HS; Codée JD; van der Marel GA Carbohydr Res; 2010 Jul; 345(10):1252-63. PubMed ID: 20347068 [TBL] [Abstract][Full Text] [Related]
19. Recent development of stereoselective C-glycosylation via generation of glycosyl radical. Ghosh T; Nokami T Carbohydr Res; 2022 Dec; 522():108677. PubMed ID: 36193593 [TBL] [Abstract][Full Text] [Related]
20. Stereodirecting Effect of C5-Carboxylate Substituents on the Glycosylation Stereochemistry of 3-Deoxy-d- manno-oct-2-ulosonic Acid (Kdo) Thioglycoside Donors: Stereoselective Synthesis of α- and β-Kdo Glycosides. Huang W; Zhou YY; Pan XL; Zhou XY; Lei JC; Liu DM; Chu Y; Yang JS J Am Chem Soc; 2018 Mar; 140(10):3574-3582. PubMed ID: 29481074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]