These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 11724611)
1. Natural J-coupling analysis: interpretation of scalar J-couplings in terms of natural bond orbitals. Wilkens SJ; Westler WM; Markley JL; Weinhold F J Am Chem Soc; 2001 Dec; 123(48):12026-36. PubMed ID: 11724611 [TBL] [Abstract][Full Text] [Related]
2. Analysis of electron correlation effects and contributions of NMR J-couplings from occupied localized molecular orbitals. Zarycz N; Aucar GA J Phys Chem A; 2012 Feb; 116(4):1272-82. PubMed ID: 22217318 [TBL] [Abstract][Full Text] [Related]
3. Natural bond orbital/natural J-coupling study of vicinal couplings. García de la Vega JM; San Fabián J J Mol Model; 2014 Jul; 20(7):2225. PubMed ID: 24944090 [TBL] [Abstract][Full Text] [Related]
4. Trans-hydrogen-bond (h2)J(NN) and (h1)J(NH) couplings in the DNA A-T base pair: natural bond orbital analysis. Wilkens SJ; Westler WM; Weinhold F; Markley JL J Am Chem Soc; 2002 Feb; 124(7):1190-1. PubMed ID: 11841286 [TBL] [Abstract][Full Text] [Related]
5. A DFT study of the interresidue dependencies of scalar J-coupling and magnetic shielding in the hydrogen-bonding regions of a DNA triplex. Barfield M; Dingley AJ; Feigon J; Grzesiek S J Am Chem Soc; 2001 May; 123(17):4014-22. PubMed ID: 11457152 [TBL] [Abstract][Full Text] [Related]
6. Structural dependencies of interresidue scalar coupling (h3)J(NC') and donor (1)H chemical shifts in the hydrogen bonding regions of proteins. Barfield M J Am Chem Soc; 2002 Apr; 124(15):4158-68. PubMed ID: 11942855 [TBL] [Abstract][Full Text] [Related]
7. One-electron versus electron-electron interaction contributions to the spin-spin coupling mechanism in nuclear magnetic resonance spectroscopy: analysis of basic electronic effects. Gräfenstein J; Cremer D J Chem Phys; 2004 Dec; 121(24):12217-32. PubMed ID: 15606240 [TBL] [Abstract][Full Text] [Related]
8. Interpretation of indirect nuclear spin-spin couplings in isomers of adenine: novel approach to analyze coupling electron deformation density using localized molecular orbitals. Marek R; Krístková A; Malináková K; Tousek J; Marek J; Hocek M; Malkina OL; Malkin VG J Phys Chem A; 2010 Jun; 114(24):6689-700. PubMed ID: 20518482 [TBL] [Abstract][Full Text] [Related]
9. Assessing weak intramolecular donor-acceptor interactions using 1H-117Sn J-HMQC spectroscopy. Biesemans M; Martins JC; Jurkschat K; Pieper N; Seemeyer S; Willem R Magn Reson Chem; 2004 Sep; 42(9):776-80. PubMed ID: 15307060 [TBL] [Abstract][Full Text] [Related]
10. NMR spin-spin coupling constants: bond angle dependence of the sign and magnitude of the vicinal (3)JHF coupling. Viesser RV; Ducati LC; Autschbach J; Tormena CF Phys Chem Chem Phys; 2016 Aug; 18(34):24119-28. PubMed ID: 27526856 [TBL] [Abstract][Full Text] [Related]
11. Pathway analysis of super-exchange electronic couplings in electron transfer reactions using a multi-configuration self-consistent field method. Nishioka H; Ando K Phys Chem Chem Phys; 2011 Apr; 13(15):7043-59. PubMed ID: 21390400 [TBL] [Abstract][Full Text] [Related]
13. Remarkable metal counterion effect on the internucleotide J-couplings and chemical shifts of the N-H...N hydrogen bonds in the W-C base pairs. Li H; Cukier RI; Bu Y J Phys Chem B; 2008 Jul; 112(30):9174-81. PubMed ID: 18598072 [TBL] [Abstract][Full Text] [Related]
14. Internucleotide J-couplings and chemical shifts of the N-H···N hydrogen-bonds in the radiation-damaged guanine-cytosine base pairs. Li H; Zhang L; Han L; Sun W; Bu Y J Comput Chem; 2011 Apr; 32(6):1159-69. PubMed ID: 21387342 [TBL] [Abstract][Full Text] [Related]
15. Dynamic effects on j-couplings across hydrogen bonds in proteins. Markwick PR; Sprangers R; Sattler M J Am Chem Soc; 2003 Jan; 125(3):644-5. PubMed ID: 12526659 [TBL] [Abstract][Full Text] [Related]
16. Effect of sulfur oxidation on the transmission mechanism of 4J(HH) NMR coupling constants in 1,3-dithiane. Gauze GF; Basso EA; Contreras RH; Tormena CF J Phys Chem A; 2009 Mar; 113(11):2647-51. PubMed ID: 19216509 [TBL] [Abstract][Full Text] [Related]
17. Cofactor-apoprotein hydrogen bonding in oxidized and fully reduced flavodoxin monitored by trans-hydrogen-bond scalar couplings. Löhr F; Yalloway GN; Mayhew SG; Rüterjans H Chembiochem; 2004 Nov; 5(11):1523-34. PubMed ID: 15515086 [TBL] [Abstract][Full Text] [Related]
18. Conformational stability, the spectroscopic (FT-IR and UV), first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 6,8-diphenylimidazo[1,2-α]pyrazine molecule by ab initio HF and density functional methods. Sıdır İ; Sıdır YG; Kayagil İ Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):339-52. PubMed ID: 21782498 [TBL] [Abstract][Full Text] [Related]
19. Probing the electronic structure of peptide bonds using methyl groups. Plusquellic DF; Pratt DW J Phys Chem A; 2007 Aug; 111(31):7391-7. PubMed ID: 17585842 [TBL] [Abstract][Full Text] [Related]
20. DFT analysis of NMR scalar interactions across the glycosidic bond in DNA. Munzarová ML; Sklenár V J Am Chem Soc; 2003 Mar; 125(12):3649-58. PubMed ID: 12643728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]