BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11724732)

  • 1. Detection of conserved physico-chemical characteristics of proteins by analyzing clusters of positions with co-ordinated substitutions.
    Afonnikov DA; Oshchepkov DY; Kolchanov NA
    Bioinformatics; 2001 Nov; 17(11):1035-46. PubMed ID: 11724732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRASP: a program for analysis of coordinated substitutions in multiple alignments of protein sequences.
    Afonnikov DA; Kolchanov NA
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W64-8. PubMed ID: 15215352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation.
    Livingstone CD; Barton GJ
    Comput Appl Biosci; 1993 Dec; 9(6):745-56. PubMed ID: 8143162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AL2CO: calculation of positional conservation in a protein sequence alignment.
    Pei J; Grishin NV
    Bioinformatics; 2001 Aug; 17(8):700-12. PubMed ID: 11524371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation Master: profiles of substitutions in hepatitis C virus RNA of the core, alternate reading frame, and NS2 coding regions.
    Walewski JL; Gutierrez JA; Branch-Elliman W; Stump DD; Keller TR; Rodriguez A; Benson G; Branch AD
    RNA; 2002 May; 8(5):557-71. PubMed ID: 12022223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the functional roles of nonconserved sequence positions in homologous transcription repressors: implications for sequence/function analyses.
    Tungtur S; Meinhardt S; Swint-Kruse L
    J Mol Biol; 2010 Jan; 395(4):785-802. PubMed ID: 19818797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheostats, toggles, and neutrals, Oh my! A new framework for understanding how amino acid changes modulate protein function.
    Swint-Kruse L; Fenton AW
    J Biol Chem; 2024 Mar; 300(3):105736. PubMed ID: 38336297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleosomal DNA property database.
    Levitsky VG; Ponomarenko MP; Ponomarenko JV; Frolov AS; Kolchanov NA
    Bioinformatics; 1999; 15(7-8):582-92. PubMed ID: 10487866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The conserved characteristics of DNA-binding domains belonging to the homeodomain class that are associated with coadaptive substitutions of amino acid residues.
    Afonnikov DA; Koichanov NA
    Dokl Biochem Biophys; 2001; 380():352-5. PubMed ID: 11727564
    [No Abstract]   [Full Text] [Related]  

  • 11. Analyzing site heterogeneity during protein evolution.
    Koshi JM; Goldstein RA
    Pac Symp Biocomput; 2001; ():191-202. PubMed ID: 11262940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families.
    Suplatov D; Sharapova Y; Timonina D; Kopylov K; Švedas V
    J Bioinform Comput Biol; 2018 Apr; 16(2):1840005. PubMed ID: 29361894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. REvolver: modeling sequence evolution under domain constraints.
    Koestler T; von Haeseler A; Ebersberger I
    Mol Biol Evol; 2012 Sep; 29(9):2133-45. PubMed ID: 22383532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated databases and computer systems for studying eukaryotic gene expression.
    Kolchanov NA; Ponomarenko MP; Frolov AS; Ananko EA; Kolpakov FA; Ignatieva EV; Podkolodnaya OA; Goryachkovskaya TN; Stepanenko IL; Merkulova TI; Babenko VV; Ponomarenko YV; Kochetov AV; Podkolodny NL; Vorobiev DV; Lavryushev SV; Grigorovich DA; Kondrakhin YV; Milanesi L; Wingender E; Solovyev V; Overton GC
    Bioinformatics; 1999; 15(7-8):669-86. PubMed ID: 10487874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary models of amino acid substitutions based on the tertiary structure of their neighborhoods.
    Primetis E; Chavlis S; Pavlidis P
    Proteins; 2021 Nov; 89(11):1565-1576. PubMed ID: 34278605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ENVIRON: a software package to compare protein three-dimensional structures with homologous sequences using local structural motifs.
    Bordo D
    Comput Appl Biosci; 1993 Dec; 9(6):639-45. PubMed ID: 8143148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures.
    Gong S; Blundell TL
    PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DIVCLUS: an automatic method in the GEANFAMMER package that finds homologous domains in single- and multi-domain proteins.
    Park J; Teichmann SA
    Bioinformatics; 1998; 14(2):144-50. PubMed ID: 9545446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterotachy and functional shift in protein evolution.
    Philippe H; Casane D; Gribaldo S; Lopez P; Meunier J
    IUBMB Life; 2003; 55(4-5):257-65. PubMed ID: 12880207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlated mutations: a hallmark of phenotypic amino acid substitutions.
    Kowarsch A; Fuchs A; Frishman D; Pagel P
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20862353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.